THE LOGARITHMIC DERIVATIVE AND A HOMOGENEOUS DIFFERENTIAL POLYNOMIAL OF A MEROMORPHIC FUNCTION

By Kazuya Tohge

1. Introduction

In this note, by a meromorphic function we mean a function meromorphic in the complex plane \boldsymbol{C}. We shall here assume that the reader is familiar with the standard notation and terminology of value distribution theory (see for example, Hayman [1] or [3]). For a meromorphic function $g(z)$, which does not vanish identically, we can consider the logarithmic derivative $g^{\prime}(z) / g(z)$. It plays an important role in Nevanlinna's theory of meromorphic functions. The following occupies the main part.

Lemma. Let $g(z)$ be a meromorphic function. If $g(z)$ is transcendental, we have

$$
\begin{equation*}
m\left(r, \frac{g^{\prime}}{g}\right)=O\left(\log ^{+} T(r, g)+\log r\right) \tag{1.1}
\end{equation*}
$$

as $r \rightarrow \infty$ through all values of $g(z)$ has finite order and as $r \rightarrow \infty$ outside a set of r of finite linear measure otherwise. If $g(z)$ is a rational function and not identically equal to zero,

$$
\begin{equation*}
m\left(r, \frac{g^{\prime}}{g}\right)=o(1) \tag{1.2}
\end{equation*}
$$

as $r \rightarrow \infty$ through all values.
For the sake of simplicity, we shall use the symbol "n.e. (nearly everywhere)" instead of tediously saying that possibly outside a set of r of finite linear measure.
W. K. Hayman pointed out the necessity of treating a homogeneous differential polynomial $g^{\prime \prime} g-2 g^{\prime 2}$ of an entire function $g(z)$ in his famous book [1; §3.6, p. 77]. Concerning this proposal E. Mues [4] studied an influence of the zeros of $g^{\prime \prime} g-a g^{\prime 2}$ with a complex number a on the entire function $g(z)$ itself.

Received April 28, 1992.

