K. TANUMA KODAI MATH. J. 13 (1990), 155-163

REMARKS ON EFFECTIVE CURVATURE

By Kazumi Tanuma

1. Introduction

Let Ω be a domain in $R_{x,y}^2$ with a reflecting smooth boundary Γ . Suppose that Ω is a media through which wave propagates with a speed c(x, y). Let s be the arc length of Γ measured along the curve from a fixed point on Γ , and n be the normal distance from Γ to the point in $\overline{\Omega}$ such that internal points of Ω correspond to n>0. Now we suppose the center of curvature is in Ω . Let $K_0(s)$ be the curvature of Γ at s. Let the speed of wave propagation be constant. Then along a concave part of $\Gamma(K_0(s)>0)$, a high frequency wave well known by the name of whispering gallery wave can propagate. When the speed is variable, the role of the boundary curvature $K_0(s)$ should be replaced by the effective curvature K(s).

Babich and Kirpichnikova [1] defined the effective curvature K(s) by

(1.1)
$$K(s) = K_0(s) + c^{-1}(s, n) \partial_n c(s, n)|_{n=0}$$

Let ω be the frequency of wave and L_{ε} be the boundary layer given by

$$L_{\varepsilon} = \{(s, n) \in \Omega; K(s) > \varepsilon > 0, n \ge 0\}$$

where n is sufficiently small.

They constructed a solution U which satisfies the following Helmholtz equation asymptotically as $\omega \rightarrow +\infty$

(1.2)
$$(\varDelta_{x,y} + \omega^2 c^{-2}(x, y))U = 0$$
 in L_{ε}

with the Dirichlet boundary condition

$$(1.3) U|_{\varGamma} = 0$$

such that the solution is concentrated near Γ in the sense that

$$(1.4) U \longrightarrow 0 ext{ exponentially as } n \to +\infty$$

Let

$$Ai(x) = \int_0^\infty \cos(t^3/3 + xt) dt \qquad (x \in R)$$

Received June 14, 1989.