CERTAIN PROPERTIES OF $S(x, n)$

By Tominosuke Otsuki

Let $S(x, n)$ be the function of x and n defined as follows:

$$
\begin{equation*}
S(x, n)=-B S_{\mathrm{s}}(x, n)+(n-x)^{n-1} S_{4}(x, n), \tag{1}
\end{equation*}
$$

where $B=(n-1)^{n-1}$,

$$
\begin{align*}
& S_{3}(x, n)=\left(8 n^{2}-5\right) x^{3}-2\left(8 n^{3}+20 n^{2}-15 n+20\right) x^{2} \tag{2}\\
& \quad+3\left(24 n^{3}-68 n^{2}+42 n-5\right) x+4 n(4 n-1)(4 n-3)
\end{align*}
$$

and

$$
\begin{align*}
& S_{4}(x, n)=(n-1)\left(4 n^{2}-10 n+5\right) x^{4}+\left(8 n^{3}-52 n^{2}+87 n-40\right) x^{3} \tag{3}\\
& \quad+3\left(12 n^{3}-42 n^{2}+37 n-5\right) x^{2}+3 n\left(16 n^{2}-32 n+9\right) x+12 n^{2}(2 n-1) .
\end{align*}
$$

The present author proved the following facts:
FACT 1. $S(x, n)>0$ for $0 \leqq x \leqq n, x \neq 1$, with $n \geqq 2$
(Proposition 4 in [1]);
FACT 2. $S(x, n)$ is decreasing in $0<x<1$ with $n \geqq 2$, and increasing in $1<$ $x<n$ with $2 \leqq n \leqq \frac{11+\sqrt{77}}{4}=4.9437410 \cdots$
(Proposition 8 in [2]).
The proof of the second part of Fact 2 was too long and worked out elaborately even though it was expected with $n \geqq 2$. We shall give another proof of it with $n \geqq 2$.

Main Theorem. $S(x, n)$ is increasing in $1<x<n$ with $n \geqq 2$.
By means of the argument of $\S 3$ in [2], setting $x=1+y$ and $n=1+m$, we have from (1) and (2)

$$
\begin{aligned}
& S_{3}(1+y)=\left(8 m^{2}+16 m+3\right) y^{3}-\left(16 m^{3}+64 m^{2}-22 m-15\right) y^{2} \\
& \quad+10 m\left(4 m^{2}-14 m-7\right) y+60 m^{2}(2 m+1),
\end{aligned}
$$

