EXTREMAL FUNCTIONS FOR BLOCH CONSTANTS

By Hiroshi Yanagihara

1. Introduction.

Let f(z) be an analytic function in the unit disc $\Delta = \{|z| < 1\}$ with $f'(0) \neq 0$. We denote by $r_f(z)$ the radius of the largest schlicht disc with center at f(z) in the Riemann image surface of $f: \Delta \rightarrow \mathbb{C}$ (the complex plane). We also denote by $\tilde{r}_f(z)$ the radius of the largest disc which is contained in $f(\Delta) \subset \mathbb{C}$. Define r_f and \tilde{r}_f by

$$r_{f} = \sup_{z \in \Delta} r_{f}(z),$$
$$\tilde{r}_{f} = \sup_{z \in \Delta} \tilde{r}_{f}(z),$$

respectively. Let \mathcal{A} be a family of all analytic functions f in Δ with $f'(0) \neq 0$ and \mathcal{A}_0 be a family of all analytic functions in Δ with $f'(z) \neq 0$, $z \in \Delta$. Let \mathcal{S} be a family of all univalent analytic functions in Δ . Then the Bloch, Landau, locally univalent Bloch and univalent Bloch constants are defined respectively by

$$B = \inf_{f \in \mathcal{A}} \frac{r_f}{|f'(0)|},$$
$$\mathcal{L} = \inf_{f \in \mathcal{A}} \frac{\tilde{r}_f}{|f'(0)|},$$
$$B_0 = \inf_{f \in \mathcal{A}_0} \frac{r_f}{|f'(0)|},$$
$$B_1 = \inf_{f \in \mathcal{S}} \frac{r_f}{|f'(0)|}.$$

For terminologies our basic references are [3] and [4].

The purpose of the present article is to show the following;

THEOREM 1. Let f(z) be one of the extremal function for the Bloch, Landau, locally univalent Bloch and univalent Bloch constants. Then

$$\left|\lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{\varepsilon < |z| < 1} \frac{f'(z)}{z^2 f'(z)} dx dy \right| \leq 1$$

Received September 2, 1987