AUTOMORPHISM GROUPS OF HYPERELLIPTIC RIEMANN SURFACES

By E. Bujalance*, J. J. Etayo* and E. Martínez*

Hurwitz [3] proved that a Riemann surface of genus g has at most 84(g-1) automorphisms. If the surface is hyperelliptic this bound may be very much shortened.

In this paper we obtain all surfaces of genus g>3 with more than 8(g-1) automorphisms, and their corresponding automorphism groups. As a consequence of these results, all hyperelliptic Riemann surfaces with more than 8(g-1) automorphisms appear to be symmetric.

The surfaces of low genus were studied by Wiman [12] and A. and I. Kuribayashi [4, 5].

The methods of our study of Riemann surfaces involve the representation of compact Riemann surfaces as quotient spaces of Fuchsian groups [6]. A Fuchsian group is a discrete subgroup of the group of orientable isometries of the hyperbolic plane D. If the quotient space D/Γ , Γ being a Fuchsian group, is compact, then Γ has the following presentation:

$$\langle a_1, b_1, \cdots, a_g, b_g, x_1, \cdots, x_r \mid a_1b_1a_1^{-1}b_1^{-1} \cdots a_gb_ga_g^{-1}b_g^{-1}x_1 \cdots x_r = x_i^{m_i} = 1 \rangle$$
.

Then we call $(g, [m_1, \dots, m_r])$ the signature of Γ and g is the genus of D/Γ . The numbers m_i are called proper periods. When X is a surface of genus g, it may be expressed as D/Γ , Γ having signature (g, [-]).

If G is a group of automorphisms of the Riemann surface D/Γ , then G may be written as Γ'/Γ , where Γ' is another Fuchsian group. A Fuchsian group K with signature $(g, [m_1, \dots, m_r])$ has associated an area

Area
$$[K] = 2\pi \left(2g - 2 + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i}\right)\right) = 2\pi |K|,$$

and the order of $G = \Gamma'/\Gamma$ is $|G| = |\Gamma|/|\Gamma'|$.

Let now D/Γ be a Riemann surface of genus g, and $G=\Gamma'/\Gamma$ its group of automorphisms. If |G|>8(g-1), then $|\Gamma'|<\frac{2(g-1)}{8(g-1)}=\frac{1}{4}$. We list the Fuchsian groups Γ' with $|\Gamma'|<\frac{1}{4}$.

^{*} Partially supported by "Comisión Asesora de Investigación Científica y Técnica". Received July 30, 1986.