N.[#]INNAMI AND K. SHIGA KODAI MATH. J. 8 (1985), 259-263

THE AXIOM OF GENERALIZED HYPERSPHERES IN RIEMANNIAN GEOMETRY

By Nobuhiro Innami and Koichi Shiga

0. Introduction.

A characterization of spaces of constant curvature is the most classical and interesting subject in Riemannian geometry ([1], [2], [3], [9], [10], [11], [12], [13], [14], [15], etc.). Many axioms which characterize spaces of constant curvature have been found out. The axiom of *n*-planes by Cartan [3] and the axiom of *n*-spheres by Leung-Nomizu [11] are well-known. In the present note we shall establish the *axiom of generalized hyperspheres* and apply it to geodesic spheres and horospheres to obtain characterizations of spaces of constant curvature.

We prepare the notation for giving our axiom. Let M be a Riemannian manifold of dimension $m \ge 3$ and N be a hypersurface (at least of class C^2) in M. Suppose that N has a unit normal vector field v. For a characterization of spaces of constant curvature we may assume without loss of generality that $\phi: N \times [0, \varepsilon) \to M$ given by $\phi(q, t) := \exp tv_q$ is diffeomorphic onto its image for some positive ε , because curvature properties are local ones. If $\phi_t(q) := \phi(q, t)$ for any $q \in N$ and for each t, then $N_t := \phi_t(N)$ is a hypersurface in M for each t. The family $\{N_t; t \in [0, \varepsilon)\}$ will be called the family of generalized hypersurfaces associated with ϕ . Set $c_q(t) := \exp tv_q$ for each $q \in N$.

We now introduce the axiom.

Axiom of generalized hyperspheres. For every point $p \in M$ and every (m-1)dimensional subspace T'_p of T_pM , there exists a hypersurface N through p such that $T_pN=T'_p$ and N_t is umbilical at $c_p(t)$ for each $t \in [0, \varepsilon)$.

In this axiom there are many choices of N, since the axiom does not require that N_t is umbilical at $c_q(t)$ for any point $q \neq p$ in N.

Then we shall prove

THEOREM 1. Let M be a Riemannian manifold of dimension $m \ge 3$. If M satisfies the axiom of generalized hyperspheres, then M is a space of constant curvature.

Applying Theorem 1 to geodesic spheres, we shall obtain

COROLLARY 2. Let M be a Riemannian manifold of dimension $m \ge 3$. If all

Received July 20, 1984