ON THE GROWTH OF MEROMORPHIC FUNCTIONS OF ORDER LESS THAN 1/2, III

Dedicated to Professor Mitsuru Ozawa on his 60th birthday

By Hideharu Ueda

Introduction.

This paper is concerned with one aspect of the Nevanlinna theory of meromorphic functions in the plane C. We shall assume acquaintance with the standard terminology of the Nevanlinna theory

$$T(r, f)$$
, $m(r, a, f)$, $n(r, a, f)$, $N(r, a, f)$, \cdots .

If f(z) is meromorphic, we define

$$M(r, f) = \sup_{|z|=r} |f(z)|, \quad m^*(r, f) = \inf_{|z|=r} |f(z)|.$$

A nonconstant function f(z) of finite order ρ is further classified as having maximal, mean, or minimal type according as

$$\limsup_{r\to\infty} T(r, f)/r^{\rho}$$

is infinite, positive, or zero, respectively.

Now, let ρ and δ be numbers with $0 \le \rho < 1/2$, $1 - \cos \pi \rho < \delta \le 1$, and let $\mathcal{M}_{\rho, \delta}$ be the set consisting of all meromorphic functions f(z) of order ρ with the property that there is an $a \in C$ satisfying $f(0) \ne a$ and

(1)
$$N(r, \infty, f) < (1-\delta)N(r, a, f) + O(1) \qquad (r \to \infty).$$

The following result is well known.

Theorem A. Let $f(z) \in \mathbf{m}_{\rho,\delta}$. Then given $\varepsilon > 0$, there is a sequence of $r \to \infty$ such that

$$(2) \hspace{1cm} \log m^*(r,\,f) > \frac{\pi \rho}{\sin \pi \rho} (\cos \pi \rho - 1 + \delta) (1 - \varepsilon) T(r,\,f) \,.$$

This result was conjectured by Teichmüller [7], and Gol'dberg [4] obtained (2) in the weaker form: $\log m^*(r, f) > K T(r, f)$, where K is a positive constant. The determination of the exact value of K is due to Ostrowskii [6].

Received April 15, 1983