HESSIAN QUARTIC FORMS AND THE BERGMAN METRIC

By Kazuo Azukawa and Jacob Burbea

Contents

§0. Introduction and notation 133
§1. Hessian quartic form of a hermitian metric 135
§ 2. The Bergman form 138
§3. Extremal quantities of the space $H(M)$ 140
§4. The biholomorphic invariant $\mu_{0, n}$ 144
§5. Hessian quartic form of the Bergman metric 147
References 151
§ 0. Introduction and notation. In [7], the "curvature" of the Carathéodory metric on a bounded domain in C^{m} is considered by using the generalized Hessian of this metric; it may be called the Hessian-curvature. Referring to this, we define Hessian quartic forms to an arbitrary hermitian metric. These Hessian quartic forms enable us to provide another proof for the following result of Wu [14; Lemmas 1 and 4]: The holomorphic sectional curvature coincides with the maximum of the Gaussian curvatures to all local one-dimensional submanifolds that contact at the point in the direction under consideration (Corollary 1.8).

Modifying the construction of the n-th order Bergman metric introduced in [6] (also see [5]), we define quantities $\mu_{0, n}(n \in N)$ as follows: We consider a certain linear functional on a specified subspace of square-integrable holomorphic m-forms on a m-dimensional complex manifold and define the quantity μ_{n} by the square of the operator norm of this functional (Proposition 3.7). We then set $\mu_{0, n}:=\mu_{n} / \mu_{0}$. The quantity $\mu_{0, n}$ is a $[0,+\infty)$-valued function on the tangent bundle, and is biholomorphic invariant (Theorem 4.2). Especially $\mu_{0,1}$ is the usual Bergman metric, and $2\left(\mu_{0,1}\right)^{2}-\mu_{0,2}$ is the quartic form defining the holomorphic sectional curvature of the Bergman metric (Theorem 4.4).

Let $\lambda_{0, n}^{z}$ be the n-th order Bergman metric on a complex manifold, relative to a coordinate z, as introduced in [6]. Then the Hessian quartic form of the Bergman metric coincides with $2\left(\mu_{0,1}\right)^{2}-\lambda_{0,2}^{z}$ (Corollary 5.4). In general, $\lambda_{0,2}^{z} \geqq \mu_{0,2}$ with an explicit statement as to when equality holds (Proposition 5.5). Finally, we note that the quantity $\lambda_{0,2}^{z}$ does depend on the coordinate z, by examining a concrete example (Corollary 5.8). One should observe, however, that while the quantity $\lambda_{0, n}^{z}$ with $n \geqq 2$ is biholomorphic invariant in the weak sense mentioned

Received March 31, 1983

