S. YAMAGUCHI AND G. CHŪMAN KODAI MATH. J. 6 (1983), 1-13

CRITICAL RIEMANNIAN METRICS ON SASAKIAN MANIFOLDS

By Seiichi Yamaguchi and Gorō Chūman

1. Introduction. Let g be a Riemannian metric which is defined on a compact orientable differentiable manifold M of dimension n and makes its volume V_g equal to 1, that is, $\int_{\mathcal{M}} dV_g = 1$, where dV_g is the volume element of M measured by g. We denote the set of all such metrics by \mathfrak{M} . When g is fixed we have a Riemannian manifold (M, g). Let us take a covering $\{U\}$ of M by coordinate neighborhoods and denote the local coordinates in U by $\{x^a\}$, where a, b, c, \cdots run over the range $\{1, 2, 3, \cdots, n\}$. In each U, g is expressed by its components g_{ab} . We adopt summation convention so that the contravariant components g^{ab} of g satisfy $g_{ac}g^{bc}=\delta_a^b$. By $R_{abc}{}^d$, R_{ab} and R we denote the components of the Riemannian curvature tensor, the Ricci tensor and the scalar curvature of (M, g), respectively. Now let us consider the integral

$$F_{\textit{M}}[g] = \int_{\textit{M}} f(R) dV_{\textit{g}}$$
 ,

where f(R) is a scalar field on M determined by g as the contraction of a tensor product of the curvature tensor. This integral defines a mapping $F: \mathfrak{M} \to R$. A critical point of F is denoted by g_F and is called a critical Riemannian metric with respect to the field f(R) or the integral $F_M[g]$. The following four kinds of critical Riemannian metrics have been studied by M. Berger [1] and Y. Mutō [5, 6, 7, 8, 9]:

$$A_{M}[g] = \int_{M} R \, dV_{g} , \qquad B_{M}[g] = \int_{M} R^{2} \, dV_{g} ,$$
$$C_{M}[g] = \int_{M} R_{ab} R^{ab} \, dV_{g} , \qquad D_{M}[g] = \int_{M} R_{abcd} R^{abcd} \, dV_{g}$$

The equations of the critical Riemannian metric are written as follows:

(1.1) $A_{ab} = C_A g_{ab}, \quad B_{ab} = C_B g_{ab}, \quad C_{ab} = C_C g_{ab}, \quad D_{ab} = C_D g_{ab},$

where C_A , C_B , C_C and C_D are undetermined constants and A_{ab} , B_{ab} , C_{ab} and D_{ab} are given by

Received February 16, 1981