T. MURAI KODAI MATH. J. 5 (1982), 313–317

THE VALUE-DISTRIBUTION OF RANDOM ENTIRE FUNCTIONS

By Takafumi Murai

1. It is well-known that, for a given entire function f(z), $\delta(a, f)=0$ $(a \in C)$ holds except possibly for a countable set, where " δ " denotes the deficiency and C the complex plane. We cannot generally remove the above exceptional set. The purpose of this paper is to show that the totality of entire functions f(z) with $\delta^*(f) = \sup_{a \in C} \delta(a, f) > 0$ is thin in a sense.

An open interval $\Omega = (-1/2, 1/2)$ is naturally a probability space. A Rademacher series $\varepsilon = (\varepsilon_k)_{k=1}^{\infty}$ in Ω is defined by $\varepsilon_k(\omega) = \operatorname{sign}(\sin 2^k \pi \omega) \ (\omega \in \Omega)$. For a sequence $(a_k)_{k=1}^{\infty} \ (\not\equiv 0) \subset C$ with $\limsup_{k \to \infty} |a_k|^{1/k} = 0$, a random entire function is defined by

(1)
$$f_{\varepsilon}(z) = \sum_{k=1}^{\infty} \varepsilon_k a_k z^k = \left\{ f_{\omega}(z) = \sum_{k=1}^{\infty} \varepsilon_k(\omega) a_k z^k; \ \omega \in \Omega \right\}.$$

A random entire function $f_{\varepsilon}(z)$ is a probability space of entire functions. We write simply $\delta(a, \omega) = \delta(a, f_{\omega}), \ \delta^{*}(\omega) = \delta^{*}(f_{\omega})$. In this paper, we shall show the following

THEOREM. $\delta^{*}(\omega) = 0$ almost surely (a. s.).

2. We denote by "Pr" the probability. Put

(2)
$$\begin{cases} T(r, f_{\omega}) = 1/2\pi \int_{0}^{2\pi} \log^{+} |f_{\omega}(re^{it})| dt \\ T_{0}(r) = \log^{+}A_{0}(r), \quad A_{0}(r) = \left(\sum_{k=1}^{\infty} |a_{k}|^{2}r^{2k}\right)^{1/2} \\ m(r, a, \omega) = 1/2\pi \int_{0}^{2\pi} \log^{+}1/|f_{\omega}(re^{it}) - a| dt \quad (a \in C, r > 0), \end{cases}$$

where $\log^+ x = \max \{\log x, 0\}$ (x > 0). Note that $\delta(a, \omega) = \liminf_{r \to \infty} m(r, a, \omega)/T(r, f_{\omega})$ $(a \in C, \omega \in \Omega)$. If $\sharp\{k; a_k \neq 0\} < \infty$, then $f_{\epsilon}(z)$ is a probability space of polynomials and we see easily $\delta^*(\omega) = 0$ for all $\omega \in \Omega$. The proof in the case where

Received March 20, 1981