M. NAKAI AND H. TANAKA KODAI MATH. J. 5 (1982), 122—131

EXISTENCE OF QUASICONFORMAL MAPPINGS BETWEEN RIEMANNIAN MANIFOLDS

By Mitsuru Nakai and Hiroshi Tanaka

Introduction.

In 1960 the first named author [8] proved that two Riemann surfaces are quasiconformally equivalent if and only if their Royden algebras are isomorphic. This result was extended to higher dimensions: to higher dimensional Euclidean domains by L.G. Lewis [6] and to Riemannian manifolds by J. Lelong-Ferrand [5]. These results show that if two Riemannian manifolds M and N are quasiconformally equivalent, then their Royden compactifications M^* and N^* are homeomorphic. The question arise whether the converse is true, that is, whether a homeomorphism from M^* to N^* can always be raised to a quasiconformal mapping from M to N.

In this paper we shall prove that the question is true in a neighborhood of ideal boundary of M, that is, if there is a homeomorphism f of M^* onto N^* , then there exists a compact subset K of M such that the restriction of f to each component of M-K is quasiconformal. Furthermore, for Riemann surfaces, we can find a quasiconformal mapping from M to N. However we do not know whether this is valid for higher dimensional cases.

Notation and terminology

We denote by \mathbb{R}^n the *n*-dimensional Euclidean space whose points x are *n*-tuple $x=(x_1, x_2, \dots, x_n)$ of real numbers $(n \ge 1)$. The distance between $x=(x_1, \dots, x_n)$ and $y=(y_1, \dots, y_n)$ is denoted by

$$|x-y| = \left(\sum_{i=1}^{n} |x_i-y_i|^2\right)^{1/2}$$

We denote by ω_{n-1} the (n-1)-dimensional Lebesgue measure of the unit sphere $\{x \in \mathbb{R}^n ; |x|=1\}$.

1. Riemannian manifolds

Let M be a connected separable, orientable *n*-idmensional $(n \ge 2)$ differentiable manifold of class C^1 with fundamental metric tensor

Received October 15, 1980.