WEAKLY NULL SEQUENCES IN JAMES SPACES ON TREES

Dedecated to Professor Goro Azumaya on his sixtieth birthday

By Ichiro Amemiya and Takashi Ito

Introduction. R. C. James [2] and J. Lindenstrauss and C. Stegall [3] gave the examples of separable Banach spaces having no subspace isomorphic to l^{1} whose duals are non-separable. We are concerned here with James' example. In [2], he constructed a Banach space having properties a) it is separable and its dual is non-separable and b) every infinite dimensional subspace contains a subspace isomorphic to l^{2}. Property a) is a direct consequence of his construction, but to see property b) requires a rather deep observation. Property b) is equivalent to
b^{\prime}) for any weakly null normalized sequence $\left\{x_{n} ; n=1,2, \cdots\right\}$ there is a sequence $\left\{y_{n} ; n=1,2, \cdots\right\}$ equivalent to an l^{2}-basis for which each y_{n} is a linear combination of x_{n} 's together with
$\mathrm{b}^{\prime \prime}$) every infinite dimensional subspace contains a weakly null normalized sequence.

In this paper we will prove a stronger property than b^{\prime}), namely that there is a subsequence, instead of linear combinations, of $\left\{x_{n} ; n=1,2, \cdots\right\}$ which is equivalent to an l^{2}-basis. In fact, we will show this under an (apparently) weaker assumption than being weakly null. It should be mentioned here that if we use H. P. Rosenthal's characterization of Banach spaces containing l^{1} [5], property $\mathrm{b}^{\prime \prime}$) is equivalent to saying that there is no subspace isomorphic to l^{1}.

In section 1, we give a definition of James spaces on trees, which are slightly more general than James' example, and we formulate our main result in Theorem. In section 2 we prove our main result.

§ 1. James Spaces and the Main Result.

Let T be a union of a countable family of pairwise disjoint non-empty finite sets $P_{n}, n=0,1,2, \cdots$. We call a point t of P_{n} a point of level n, and write $l(t)=n$. We assume there is a binary relation between points of P_{n} and points of P_{n+1}, which we call a connection, such that for every $n=0,1,2, \cdots$, each point of level n is connected to at least one point of level $n+1$ and each point of level $n+1$ is connected to only one point of level n. The following illustrates an example of connections between points of the first three levels

[^0]
[^0]: Receıved March 26, 1980

