WEAKLY NULL SEQUENCES IN JAMES SPACES ON TREES

Dedecated to Professor Goro Azumaya on his sixtieth birthday

By Ichiro Amemiya and Takashi Ito

Introduction. R. C. James [2] and J. Lindenstrauss and C. Stegall [3] gave the examples of separable Banach spaces having no subspace isomorphic to l^1 whose duals are non-separable. We are concerned here with James' example. In [2], he constructed a Banach space having properties a) it is separable and its dual is non-separable and b) every infinite dimensional subspace contains a subspace isomorphic to l^2 . Property a) is a direct consequence of his construction, but to see property b) requires a rather deep observation. Property b) is equivalent to

b') for any weakly null normalized sequence $\{x_n; n=1, 2, \dots\}$ there is a sequence $\{y_n; n=1, 2, \dots\}$ equivalent to an l^2 -basis for which each y_n is a linear combination of x_n 's together with

 $b^{\prime\prime})~$ every infinite dimensional subspace contains a weakly null normalized sequence.

In this paper we will prove a stronger property than b'), namely that there is a *subsequence*, instead of linear combinations, of $\{x_n; n=1, 2, \dots\}$ which is equivalent to an l^2 -basis. In fact, we will show this under an (apparently) weaker assumption than being weakly null. It should be mentioned here that if we use H. P. Rosenthal's characterization of Banach spaces containing l^1 [5], property b") is equivalent to saying that there is no subspace isomorphic to l^1 .

In section 1, we give a definition of James spaces on trees, which are slightly more general than James' example, and we formulate our main result in Theorem. In section 2 we prove our main result.

§1. James Spaces and the Main Result.

Let T be a union of a countable family of pairwise disjoint non-empty finite sets P_n , $n=0, 1, 2, \cdots$. We call a point t of P_n a point of *level* n, and write l(t)=n. We assume there is a binary relation between points of P_n and points of P_{n+1} , which we call a *connection*, such that for every $n=0, 1, 2, \cdots$, each point of level n is connected to at least one point of level n+1 and each point of level n+1 is connected to only one point of level n. The following illustrates an example of connections between points of the first three levels

Received March 26, 1980