CURVATURE INVARIANTS OF $C R$-MANIFOLDS

By Kunio Sakamoto and Yoshiya Takemura

§ 0. Introduction.

In [2], S. Bochner defined a certain curvature tensor as a complex analogy of Weyl conformal curvature tensor without geometrical interpretation. At present this tensor is called Bochner curvature tensor. Recently Webster [9], [11] gave this geometrical interpretation as a pseudoconformal invariant on a $C R$-manifold. Indeed Bochner curvature tensor is the 4th curvature invariant given in Chern-Moser's paper [4] (cf. Tanaka [7]). In this paper we shall also derive Bochner curvature tensor from our argument of $C R$-structure.

In [6] we studied almost contact structures standing on the viewpoint of pseudoconformal geometry and gave the change of canonical connections associated with almost contact structures belonging to the same $C R$-structure. The point under our discussion is the fact that almost contact structures belonging to a $C R$-structure play the same role as Riemannian structures belonging to a conformal structure and canonical connections correspond to Riemannian connections. Like the conformal change of Riemannian connections, a gradient vector appears in the change of canonical connections. Therefore we compute the difference of their curvature tensors and eliminate the gradient vector. Then we get a curvature invariant.

In $\S 1$ we recall definitions and results given in [6]. $\S 2$ is devoted to the study of curvatures of canonical connections. We in §3 obtain the curvature invariant of the pseudo-conformal geometry.

The authors wish to express their hearty thanks to Professor S. Ishihara for his constant encouragement and valuable suggestions.

§ 1. Preliminaries.

Let \mathscr{M} be a connected orientable C^{∞}-manifold of dimension $2 n+1(n \geqq 1)$ and (\mathscr{D}, J) a pair of a hyperdistribution \mathscr{D} and a complex structure J on \mathscr{D}. The pair (\mathscr{D}, J) is called a $C R$-structure if the following two conditions hold:

$$
\begin{equation*}
[J X, J Y]-[X, Y] \in \Gamma(\mathscr{D}) \tag{C.1}
\end{equation*}
$$

$$
\begin{equation*}
[J X, J Y]-[X, Y]-J([X, J Y]+[J X, Y])=0 \tag{C.2}
\end{equation*}
$$

Received February 7, 1980

