H. UEDA KODAI MATH. J. 3 (1980), 457-471

UNICITY THEOREMS FOR MEROMORPHIC OR ENTIRE FUNCTIONS

By Hideharu Ueda

1. Let f and g be meromorphic functions. We denote the order of f by ρ_f . In what follows we use the notation $f=a \rightarrow g=a$ in the following sense: Z_n is a zero of g-a of order at least $\nu(n)$ whenever Z_n is a zero of f-a of order $\nu(n)$. If k is a positive integer or ∞ , let $E(a, k, f) = \{z \in C : z \text{ is a zero of } f-a \text{ of order } \nu(n)$. If k is a positive integer or ∞ , let $E(a, k, f) = \{z \in C : z \text{ is a zero of } f-a \text{ of order } \nu(n)$. If k is a positive integer or ∞ , let $E(a, k, f) = \{z \in C : z \text{ is a zero of } f-a \text{ of order } \nu(n)$, we denote by $\overline{n}_k(r, a, f)$ the number of distinct zeros of order $\leq k$ of f-a in $|z| \leq r$ (each zero of order $\leq k$ is counted only once irrespective of its multiplicity). And we set

$$\bar{N}_{k}(r, a, f) = \int_{0}^{r} \frac{\bar{n}_{k}(t, a, f) - \bar{n}_{k}(0, a, f)}{t} dt + \bar{n}_{k}(0, a, f) \log r$$

Further we denote by $n_0^{(k)}(r, a; f, g)$ the number of common zeros of order $\leq k$ of f-a and g-a in $|z| \leq r$, and we set

$$N_0^{(k)}(r, a; f, g) = \int_0^r \frac{n_0^{(k)}(t, a; f, g) - n_0^{(k)}(0, a; f, g)}{t} dt + n_0^{(k)}(0, a; f, g) \log r.$$

In this paper we shall prove some unicity theorems for meromorphic or entire functions.

2. Gopalakrishna and Bhoosnurmath have proved the following theorem in [1].

THEOREM A. Let f and g be transcendental meromorphic functions. Assume that there exist distinct elements a_1, \dots, a_m in \overline{C} such that $E(a_i, k_i, f) = E(a_i, k_i, g)$ for $i=1, \dots, m$; where each k_i is a positive integer or ∞ with $k_1 \ge \dots \ge k_m$, and $\{k_i\}_i^m$ satisfies

$$\sum_{i=2}^{m} \frac{k_{i}}{k_{i}+1} - \frac{k_{1}}{k_{1}+1} > 2.$$

Then $f \equiv g$.

From Theorem A several consequences including a theorem of Nevanlinna [4] are deduced.

THEOREM A₁. Let f and g be transcendental meromorphic functions. If there Received November 8, 1979