A NOTE ON ENDOMORPHISM RINGS OF ABELIAN VARIETIES OVER FINITE FIELDS

By Tetsuo Nakamura

Let p be a prime and let A be a simple abelian variety over a finite field k with p^{a} elements. In this note we ask some sufficient conditions that the endomorphism ring of A over k is maximal at p. Our result includes the first part of theorem 5.3 in Waterhouse [5]. The related facts should be referred to [5].

§1. Let $\operatorname{End}_k(A)$ be the ring of k-endomorphisms of a simple abelian variety A over a finite field k with p^a elements. We shall always assume that $\operatorname{End}_k(A)$ is commutative. Then there exist a CM field E and an isomorphism $i_A: E \to \operatorname{End}_k(A) \otimes Q$. Let $R = \iota_A^{-1}(\operatorname{End}_k(A))$ and let K be the totally real subfield of index 2 in E. Let f_A be the Frobenius endomorphism of A over k and put $\pi = \iota_A^{-1}(f_A)$. Then π is a Weil p^a -number, i.e. an algebraic integer such that $|\pi|^2 = p^a$ in all embeddings of $E = Q(\pi)$ into C. Let w be a place of K above p and v be a place of E with $v \mid w$. Then we have the following three cases;

(1) $v(\pi) = 0$ or $v(\pi) = v(p^a)$.

(2)
$$v(\pi) = v(p^a \pi^{-1})$$
.

(3) $v(\pi) \neq v(p^a \pi^{-1})$ and $0 < v(\pi) < v(p^a)$.

We call that w is of type (1) (resp., (2), (3)) if v satisfies (1) (resp., (2), (3)). This is independent of the choice of v with v|w. Let K_w be the completion of K at w and let

$$\begin{split} G_w &= (G_{1,0})^{[K_w; \boldsymbol{q}_p]}, & \text{if } w \text{ is of type (1),} \\ &= (G_{1,1})^{[K_w; \boldsymbol{q}_p]}, & \text{if } w \text{ is of type (2),} \\ &= G_{s,t} + G_{t,s}, & \text{if } w \text{ is of type (3),} \end{split}$$

where $s=s(w)=[K_w: Q_p]v(\pi)/v(p^a)$ and $t=t(w)=[K_w: Q_p]v'(\pi)/v'(p^a)$ with the other place v' of E above w. Then the formal group \hat{A} of A is isogenous to $\sum_{w|p} G_w$ (over the algebraic closure of k.) (cf. Manin [1], Chap. IV).

Now let T_pA be the Dieudonné module of \hat{A} . Let W = W(k) be the ring of Witt vectors over k and σ the automorphism of W induced by the Frobenius

Received October 13, 1977.