K. MATSUMOTO KODAI MATH. SEM. REP 28 (1977), 135-143

φ-TRANSFORMATIONS ON A K-CONTACT RIEMANNIAN MANIFOLD

By Kōzi Matsumoto

§ 0. Introduction. It is very interesting to make reserches on the subject of manifolds admitting a tensor field invariant under a certain transformation. Now, S. Tanno has studied φ -transformations on almost contact Riemannian manifolds and given several important conclusions ([4]). The main purpose of the present paper is to prove Theorems 2.2, 3.1, 4.2 and 4.4.

§1. Preriminaries. Let M be a (2n+1)-dimensional differentiable manifold satisfying the second axiom of countability. In this paper, manifolds, geometric objects and mappings we consider are assumed to be differentiable and of class C^{∞} . If there exists a tensor field φ_j^{i} of type (1.1), contravariant and covariant vector fields ξ^{i} and η_i on M which satisfy the following conditions:

(1.1)
$$\hat{\xi}^i \eta_i = 1,$$

(1.2)
$$\varphi_r^{i}\varphi_j^{r} = -\delta_j^{i} + \hat{\xi}^{i}\eta_j,$$

then M is said to have an almost contact structure and called an almost contact manifold. The suffices k, j, \dots, i run over the range $\{1, 2, \dots, 2n+1\}$ and the summation convension will be used. For an almost contact structure the following identities are established ([3]):

(1.3)
$$\varphi_r^{i}\xi^r = 0, \qquad \eta_r \varphi_j^{r} = 0.$$

Let M be an almost contact manifold. Then there exists a positive definite Riemannian metric g_{ji} such that

(1.4)
$$\eta_i = g_{ir} \xi^r ,$$

(1.5)
$$g_{sr}\varphi_{j}{}^{s}\varphi_{i}{}^{r}=g_{ji}-\eta_{j}\eta_{i}.$$

Such a metric tensor g_{ji} is called an associated Riemannian metric with the given almost contact structure. If a differentiable manifold M admits tensor fields $(\varphi_j^i, \xi^i, \eta_i, g_{ji})$ such that g_{ji} is a Riemannian metric associated with the almost contact structure, then M is called an almost contact Riemannian manifold.

Recived Sep. 29, 1975