Y. TASHIRO KODAI MATH. SEM. REP. 27 (1976), 436-444

ON CONFORMAL DIFFEOMORPHISMS OF 4-DIMENSIONAL RIEMANNIAN MANIFOLDS

By Yoshihiro Tashiro

Introduction. Let M and M^* be *n*-dimensional connected Riemannian manifolds with metric tensor fields g and g^* respectively, and consider a conformal diffeomorphism f of M into M^* . Then the metric tensor fields are related by

$$g^* = \frac{1}{\rho^2} g$$
,

where ρ is a positive-valued scalar field on M and said to be associated with f.

In his previous paper [3], the present author proved the following theorems, the first of which is of local character and the second of global character:

THEOREM A. Assume that M and M* are Riemannian manifolds of dimension $n \ge 4$, M is the Pythagorean product of two Riemannian manifolds M_1 and M_2 of dimension n_1 and n_2 respectively, and the Ricci tensor of M* is parallel. If there is a non-homothetic conformal diffeomorphism of M into M* such that the associated scalar field ρ depends on both M_1 and M_2 in an open subset in M, then both the parts M_1 and M_2 of M are Einstein manifolds, except the case $n_1=n_2=2$, and the scalar curvatures κ_1 and κ_2 of the parts possess one of the following properties:

- 1) $\kappa_1 = -\kappa_2 = k$, k being a non-zero constant,
- 2) $\kappa_1 = k$ and M_2 is one-dimensional, $\kappa_2 = 0$,

3) $\kappa_1 = \kappa_2 = 0$ so that M is an Einstein manifold of zero scalar curvature.

THEOREM B. In addition to the assumptions of the theorem above, we assume that M and M^* are complete and M is reducible in place of being the Pythagorean product. Then there exists no non-homothetic conformal diffeomorphism of M onto M^* such that the associated scalar field ρ depends on both M_1 and M_2 in an open subset in M.

The purpose of this paper is to discuss conformal diffeomorphisms in the exceptional case $n_1 = n_2 = 2$ of Theorem A and to prove the following theorem of local character:

THEOREM. Assume that M is the Pythagorean product $M_1 \times M_2$ of twodimensional manifolds M_1 and M_2 with metric tensor g_1 and g_2 respectively and

Received Feb. 17, 1975.