N. SUITA KODAI MATH. SEM. REP. 27 (1976), 159-162

ON A METRIC INDUCED BY ANALYTIC CAPACITY II

Dedicated to Professor Yûsaku Komatu on his 60th birthday

By Nobuyuki Suita

1. Introduction. Let Ω be a plane region having nonconstant bounded analytic functions. Let $c_B(\zeta)$ be the least upper bound of $|f'(\zeta)|$, $\zeta \in \Omega$ in the class of bounded analytic functions satisfying $|f| \leq 1$ in Ω . In our earlier paper [5] of these reports we have proved that the curvature in the metric $ds_B = |c_B(\zeta)| |d\zeta|$ is not greater than -4, by making use of a supporting metric due to Ahlfors [1].

In the present paper we will show that a method of Bergman [3] provides the same result and further a more precise estimation $\kappa(\zeta) < -4$ for a finitely connected region bounded by more than one curves.

2. Extremal problems. Let Ω be a plane region bounded by a finite number of analytic Jordan curves. The class of analytic functions f such that $|f(z)|^2$ has a harmonic majorant in Ω is called the *Hardy class* of index two, denoted by $H_2(\Omega)$. Every function f in $H_2(\Omega)$ has a non-tangential boundary value almost everywhere on the boundary $\partial\Omega$ of Ω which will be denoted by the same notation $f(z), z \in \partial\Omega$. The function f(z) is measurable and square integrable on $\partial\Omega$ [4]. We define the inner product (f, g) of f and $g \in H_2(\Omega)$ by

$$(f,g) = \int_{\partial \mathcal{Q}} f(z) \overline{g(z)} |dz|.$$

Then $H_2(\Omega)$ becomes a Hilbert space. There exists the Szegö kernel function $k(z, \bar{\zeta})$ in $H_2(\Omega)$ which is characerized by the reproducing property:

(1)
$$f(\zeta) = \int_{\partial \mathcal{Q}} f(z) \overline{k(z, \bar{\zeta})} |dz|,$$

for $f \in H_2(\Omega)$ [3]. The following problems were dealt with by Bergman [3]. Consider two extremal problems:

I) Minimize $||f||^2 = (f, f)$ in the subclass of $H_2(\Omega)$ each member of which satisfies $f(\zeta)=1$ for $\zeta \in \Omega$.

II) Minimize $||f||^2$ in the subclass of $H_2(\Omega)$ each member of which satisfies $f(\zeta)=0$ and $f'(\zeta)=1$.

Received March 20, 1974.