AUTOMORPHISMS OF THE GALOIS GROUP OF THE ALGEBRAIC CLOSURE OF THE RATIONAL NUMBER FIELD

By Tsuneo Kanno

For any Galois extension K/k, let Gal(K/k) be the topological Galois group of K/k. Let Q be the rational number field and let \overline{Q} be the algebraic closure of Q. For algebraic number field K, let \widetilde{K} be the composite of all solvable extensions of K, and put G_K =Gal (\overline{Q}/K) and \widetilde{G}_K =Gal (\widetilde{K}/K) .

In [1] and [2] Neukirch proved that for algebraic number fields K_1 and K_2 which are finite Galois extensions of Q, $G_{K_1} \simeq G_{K_2}$ (or $\tilde{G}_{K_1} \simeq \tilde{G}_{K_2}$) implies $K_1 = K_2$, and in [2] he gave a conjecture to the effect that any automorphism of G_Q (or \tilde{G}_Q) is inner. By his theorem we have that $\sigma(G_K) = G_K$, for any automorphism σ of G_Q (or \tilde{G}_Q) and for any number field K which is a finite Galois (or solvable, res.) extension of Q; thus we have that σ induces an automorphism σ_K of Gal (K/Q). If by Aut₀ (Gal (K/Q)) we denote the subgroup of the automorphism group Aut (Gal(K/Q)) of Gal (K/Q), consisting of those elements which leave any normal subgroup of Gal (K/Q) invariant, we have that the mapping $\sigma \mapsto (\sigma_K)_K$ gives a canonical isomorphism of the automorphism group Aut (G_Q) (or Aut (\tilde{G}_Q)) onto the projective limit $\lim_{n \to \infty} Aut_0$ (Gal (K/Q)), where K runs among the number fields which are finite Galois (or solvable, resp.) extensions of Q. It is shown that the above conjecture is true if and only if any $\sigma_{\varepsilon} \operatorname{Aut}(G_Q)$ (or Aut (\tilde{G}_Q)) induces an inner automorphism σ_K for any finite Galois (or solvable, resp.) extension K of Q.

As Neukirch pointed out in [2], it is natural to consider some kind of group extensions to solve this problem. In this note we shall show that σ_K is inner for a certain class of finite Galois (or solvable) extensions K of Q, at least for any finite abelian extension K of Q.

Let $G = \{g, g_1, g_2, \dots\}$ be a finite group and let $A = \{a, a_1, a_2, \dots\}$ be a finite abelian group. Let θ be a homomorphism of G into the automorphism group (A) of A and let

$$G \times A
i (g, a) \longmapsto g \circ a = \theta(g)(a) \in A$$

be the operation of G on A by θ . Let \hat{G} be the semidirect product $A \times_{\theta} G$ of A and G by θ : i.e. \hat{G} is the group which is $A \times G$ as set and in which the group operation is given by

Received November 30, 1972.