NIINO, K. KODAI MATH. SEM. REP 25 (1973), 429–434

ON THE GROWTH RATE OF COMPOSITIONS OF ENTIRE FUNCTIONS

By Kiyoshi Niino

1. Let f(z) be an entire function, M(r, f) its maximum modulus on |z|=r and T(r, f) its Nevanlinna characteristic function. Recently Gross and Yang [4] proved the following:

Suppose that f(z), g(z) are entire functions such that

(1.1) $T(\alpha r, g) = o\{T(r, f)\} \quad as \quad r \to \infty$

for some constant $\alpha > 1$. Then for any non-constant entire function h(z),

 $T(r, h \circ g) = o\{T(r, h \circ f)\}$ as $r \to \infty$

In this paper we shall consider the asymptotic behavior of the ratio $\log M(r, h \circ g)/\log M(r, h \circ f)$ replacing $T(r, \cdot)$ by $\log M(r, \cdot)$ in the above condition (1.1).

Our results are the following:

THEOREM 1. Let g(z) and f(z) be entire functions such that

(1.2)
$$\lim_{r \to \infty} \frac{\log M(\alpha r, g)}{\log M(r, f)} = 0$$

for some constant $\alpha > 1$. Then for any non-constant entire function h(z),

$$\lim_{r\to\infty}\frac{\log M(r, h\circ g)}{\log M(r, h\circ f)}=0.$$

THEOREM 2. Let g(z) and f(z) be entire functions such that

(1.3)
$$\lim_{r \to \infty} \frac{\log M(r, g)}{\log M(r, f)} = 0.$$

Then for any non-constant entire function h(z),

$$\lim_{r\to\infty}\frac{\log M(r,h\circ g)}{\log M(r,h\circ f)}=0.$$

Received November 28, 1972.