ISHIHARA, S. KODAI MATH. SEM. REP. 25 (1973), 321–329

QUATERNION KÄHLERIAN MANIFOLDS AND FIBRED RIEMANNIAN SPACES WITH SASAKIAN 3-STRUCTURE

By Shigeru Ishihara

In a previous paper [6], we have studied fibred Riemannian spaces with Sasakian 3-structure and showed that there appears a kind of structure in the base space of a fibred Riemannian space with Sasakian 3-structure. In the present paper, we shall show that this kind of structure is what is called a quaternion Kählerian structure (See [1], [2], [3], [5], [7] and [9]).

In 1, we recall definitions and some properties of a fibred Riemannian space with Sasakian 3-structure for later use. In §2, we show that the base space of a fibred Riemannian space with Sasakian 3-structure admits a quaternion Kählerian structure defined in [5]. The last section is devoted to state some properties of a quaternion Kählerian manifold. Quaternion Kählerian manifolds will be studied a little bit in detail in [5].

Manifolds, mappings and geometric objects we consider are assumed to be differentiable and of class C^{∞} . The indices h, i, j, k run over the range $\{1, 2, \dots, n\}$, the indices a, b, c, d, e over the range $\{1, 2, \dots, n-3\}$ and the indices $\alpha, \beta, \gamma, \delta, \varepsilon$ over the range $\{1, 2, 3\}$. The summation convention will be used with respect to these three systems of indices.

§1. Fibred Riemannian spaces with Sasakian 3-structure.

In a Riemannian manifold (\tilde{M}, \tilde{g}) of dimension *n* with metric tensor \tilde{g} , let there be given a Killing vector ξ of unit length satisfying the condition

(1.1)
$$\tilde{\mathcal{V}}_{j}\tilde{\mathcal{V}}_{i}\xi^{h} = \xi_{i}\delta^{h}_{j} - \xi^{h}\tilde{g}_{ji},$$

 ξ^h being components of ξ and \tilde{g}_{ji} components of \tilde{g} , where $\xi_i = \xi^h \tilde{g}_{hi}$ and \tilde{V}_j denote the Riemannian connection of (\tilde{M}, \tilde{g}) . Then ξ is called a *Sasakian structure* or a *normal contact metric structure* in (\tilde{M}, \tilde{g}) (See [4] and [8]).

We now assume that (\tilde{M}, \tilde{g}) admits three Sasakian structures ξ, η and ζ which are mutually orthogonal and satisfy the conditions

$$[\eta, \zeta] = 2\xi, \qquad [\zeta, \xi] = 2\eta, \qquad [\xi, \eta] = 2\zeta.$$

Received September 19, 1972.