SUITA, N. KÕDAI MATH. SEM. REP 25 (1973), 215–218

ON A METRIC INDUCED BY ANALYTIC CAPACITY

By Nobuyuki Suita

Dedicated to Professor Yukinari Tôki on his 60th birthday

1. In our previous paper [6] we gave a conjecture that the metrics $c_{\beta}(z)|dz|$ and $\sqrt{\pi \tilde{K}(z, z)|dz|}$ have negative curvatures ≤ -4 ; here $c_{\beta}(z)$ and $\tilde{K}(z, z)$ are the capacity and the Bergman kernel of exact analytic differentials on an open (nontrivial) Riemann surface. In the present paper we shall show that the curvature of the metric $c_B(z)|dz| \leq -4$ for plane regions $\Omega \notin O_{AB}$, where $c_B(z)$ denotes the analytic capacity of Ω at z. In order to verify $c_B(z) \in C^2$ we prove that $c_B(z)$ is real analytic. This enables us to answer a question of Havinson [4], namely "Does the sequence of extremal functions ϕ_n in the dual problem of Schwarz's lemma in Ω_n converge as $\{\Omega_n\}$ exhausts Ω ?".

2. Let Ω be a plane region $\notin O_{AB}$. The analytic capacity $c_B(\zeta)$ is given by sup $|f'(\zeta)|$ in the family of analytic functions satisfying $f(\zeta)=0$ and $|f(z)| \leq 1$. Let $\{\Omega_n\}$ be a canonical exhaustion of Ω such that the boundary of Ω_n consists of a finite number of analytic curves. Let $c_n(\zeta)$ be the analytic capacity of Ω_n . Then $\{c_n(\zeta)\}$ is decreasing and tends to $c_B(\zeta)$. There exist extremal functions f_n such that $f'_n(\zeta)=c_n(\zeta)$ and $f'_0(\zeta)=c_B(\zeta)$. It is known that those extremal functions are unique [4]. The function $\log c_B(\zeta)$ is subharmonic [2].

In every Ω_n there exists the Szegö kernel $k_n(z, \zeta)$ and its adjoint kernel $l_n(z, \zeta)$ [3]. $k_n(z, \zeta)$ is hermitian and analytic with respect to z and ζ . Further the following facts are known [3]:

(1)
$$f_n(z) = \frac{k_n(z,\zeta)}{l_n(z,\zeta)} \quad \text{with} \quad c_n(\zeta) = 2\pi k_n(\zeta,\zeta)$$

and

$$|k_n(z, \zeta)|^2 \leq |k_n(z, z)| |k_n(\zeta, \zeta)|.$$

Thus $k_n(z, \zeta)$ is uniformly bounded on every compact subset and hence forms a normal family of analytic functions of two variables z, ζ . We will show that $\{k_n(z, \zeta)\}$ converges to a function $k(z, \zeta)$ uniformly on every compact subset of Ω .

Suppose that there exist two limit functions $k(z, \zeta)$ and $k^*(z, \zeta)$. We may assume $0 \in \Omega$. The difference $k(z, \zeta) - k^*(z, \zeta)$ has an expansion in a polydisc $\{|z| < r\} \times \{|\zeta| < r\}$

Received May 19, 1972.