ITOH, T. KODAI MATH. SEM. REP 25 (1973). 202-214

MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE

BY TAKEHIRO ITOH

For surfaces in a 4-dimensional Riemannian manifold of constant curvature, the author [3] proved the following

THEOREM. *Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a unit sphere of dimension* 4. *If the normal* $scalar$ curvature K_N is non-zero constant, then M may be regarded as a Veronese *surface.*

In this paper, he generalizes the above theorem and proves the following

THEOREM. *Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a* $(2 + v)$ -dimensional unit sphere S^{2+v} . If the *normal scalar curvature* K_N is non-zero constant and the square of the second *curvature* k_2 *is less then* $K_N/4$, then M is a generalized Veronese surface.

By a generalized Veronese surface we mean a surface defined by Otsuki [6].

§ 1. Preliminaries.

Let \overline{M} be a $(2 + \nu)$ -dimensional Riemannian manifold of constant curvature \bar{c} and M be a 2-dimensional Riemannian manifold immersed isometrically in \overline{M} by the immersion *x*: $M \rightarrow \overline{M}$. $F(\overline{M})$ and $F(M)$ denote the orthonormal frame bundles over \overline{M} and M respectively. Let B be the set of all elements $b = (p, e_1, e_2, e_3, \cdots, e_{2+\nu})$ such that $(p, e_1, e_2) \in F(M)$ and $(p, e_1, e_2, e_3, \cdots, e_{2+\nu}) \in F(\bar{M})$ identifying $p \in M$ with $x(p)$ and e_i with $dx(e_i)$, $i = 1, 2$. Then *B* is naturally considered as a smooth submanifold of $F(\bar{M})$. Let $\bar{\omega}_A$, $\bar{\omega}_{AB} = -\bar{\omega}_{BA}$, A, B=1, 2, 3, \cdots , 2+ ν , be the basic and connection forms of \overline{M} on $F(\overline{M})$ which satisfy the structure equations:

(1.1)
\n
$$
d\overline{\omega}_A = \sum_B \overline{\omega}_{AB} \wedge \overline{\omega}_B,
$$
\n
$$
d\overline{\omega}_{AB} = \sum_C \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} - \overline{c} \overline{\omega}_A \wedge \overline{\omega}_B.
$$

Received May 18, 1972.