ITOH, T. KŌDAI MATH. SEM. REP 25 (1973), 202-214

MINIMAL SURFACES IN A RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE

By Takehiro Itoh

For surfaces in a 4-dimensional Riemannian manifold of constant curvature, the author [3] proved the following

THEOREM. Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a unit sphere of dimension 4. If the normal scalar curvature K_N is non-zero constant, then M may be regarded as a Veronese surface.

In this paper, he generalizes the above theorem and proves the following

THEOREM. Let M be a 2-dimensional connected compact Riemannian manifold which is minimally immersed in a $(2 + \nu)$ -dimensional unit sphere $S^{2+\nu}$. If the normal scalar curvature K_N is non-zero constant and the square of the second curvature k_2 is less then $K_N/4$, then M is a generalized Veronese surface.

By a generalized Veronese surface we mean a surface defined by Otsuki [6].

§1. Preliminaries.

Let \overline{M} be a $(2 + \nu)$ -dimensional Riemannian manifold of constant curvature \overline{c} and M be a 2-dimensional Riemannian manifold immersed isometrically in \overline{M} by the immersion $x: M \to \overline{M}$. $F(\overline{M})$ and F(M) denote the orthonormal frame bundles over \overline{M} and M respectively. Let B be the set of all elements $b = (p, e_1, e_2, e_3, \dots, e_{2+\nu})$ such that $(p, e_1, e_2) \in F(M)$ and $(p, e_1, e_2, e_3, \dots, e_{2+\nu}) \in F(\overline{M})$ identifying $p \in M$ with x(p) and e_i with $dx(e_i)$, i = 1, 2. Then B is naturally considered as a smooth submanifold of $F(\overline{M})$. Let $\overline{\omega}_A, \overline{\omega}_{AB} = -\overline{\omega}_{BA}, A, B = 1, 2, 3, \dots, 2+\nu$, be the basic and connection forms of \overline{M} on $F(\overline{M})$ which satisfy the structure equations:

(1.1)
$$d\overline{\omega}_{A} = \sum_{B} \overline{\omega}_{AB} \wedge \overline{\omega}_{B},$$
$$d\overline{\omega}_{AB} = \sum_{C} \overline{\omega}_{AC} \wedge \overline{\omega}_{CB} - \overline{c} \overline{\omega}_{A} \wedge \overline{\omega}_{B}.$$

Received May 18, 1972.