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§1. Introduction.

Let (M, g, J) be an almost Hermitian manifold with almost complex structure
tensor J and almost Hermitian metric tensor g. By R we denote the Riemannian
curvature tensor; R(X, Y)Z=Vx vrZ—[Vx, F'¥]1Z. The holomorphic sectional cur-
vature H(X) for a unit tangent vector X is the sectional curvature K(X, JX)
=g(R(X, JX)X, JX). Let z be a point of M. If H(X) is constant for every unit
tangent vector X at x, (M, g, /) is said to be of constant holomorphic sectional
curvature at z. If H(X) is constant for every x and every tangent vector X at
x, then (M, g, J) is said to be of constant holomorphic sectional curvature.

One of the main theorems is as follows:

TureoREM A. Let dim M=m=2n>4. Assume that almost Hermitian manifold
(M, g, ) satisfies

1. 1) g(RUJX, JY)JX, JZ)=9(R(X, Y)X, Z)

for every tangent vectors X, Y and Z. Then, (M, g,]) is of constant holomorphic
sectional curvature at x, if and only if

1. 2) R(X, JX)X s proportional to JX
Jfor every tangent vector X at x.

The condition (1. 1) is satisfied in every Kihlerian manifold or more generally
in every K-space (=nearly Kihlerian space, almost Tachibana space).

The condition (1. 2) itself has a geometric meaning. It is also stated as follows:
Let ¢ be a holomorphic plane and let X, /X be in o¢; then R(X, JX) satisfies
R(X, J]X)oce and R(X, JX)slcol, where oL denotes the orthocomplement of ¢ in
the tangent space.

In §2, as preliminaries we state some Propositions which give conditions for
a Riemannian manifold to be of constant curvature.

In §3, we prove Theorem A. Theorem A is concerned with point-wise constant
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