TANNO, S. KÖDAI MATH. SEM. REP 25 (1973), 190–201

CONSTANCY OF HOLOMORPHIC SECTIONAL CURVATURE IN ALMOST HERMITIAN MANIFOLDS

By Shûkichi Tanno

Dedicated to Professor K. Yano on his 60th birthday

§1. Introduction.

Let (M, g, J) be an almost Hermitian manifold with almost complex structure tensor J and almost Hermitian metric tensor g. By R we denote the Riemannian curvature tensor; $R(X, Y)Z = \mathcal{F}_{[X,Y]}Z - [\mathcal{F}_X, \mathcal{F}_Y]Z$. The holomorphic sectional curvature H(X) for a unit tangent vector X is the sectional curvature K(X, JX)= g(R(X, JX)X, JX). Let x be a point of M. If H(X) is constant for every unit tangent vector X at x, (M, g, J) is said to be of constant holomorphic sectional curvature at x. If H(X) is constant for every x and every tangent vector X at x, then (M, g, J) is said to be of constant holomorphic sectional curvature.

One of the main theorems is as follows:

THEOREM A. Let dim $M=m=2n\geq 4$. Assume that almost Hermitian manifold (M, g, J) satisfies

(1.1)
$$g(R(JX, JY)JX, JZ) = g(R(X, Y)X, Z)$$

for every tangent vectors X, Y and Z. Then, (M, g, J) is of constant holomorphic sectional curvature at x, if and only if

(1. 2)
$$R(X, JX)X$$
 is proportional to JX

for every tangent vector X at x.

The condition (1, 1) is satisfied in every Kählerian manifold or more generally in every *K*-space (=nearly Kählerian space, almost Tachibana space).

The condition (1.2) itself has a geometric meaning. It is also stated as follows: Let σ be a holomorphic plane and let X, JX be in σ ; then R(X, JX) satisfies $R(X, JX)\sigma \subset \sigma$ and $R(X, JX)\sigma^{\perp} \subset \sigma^{\perp}$, where σ^{\perp} denotes the orthocomplement of σ in the tangent space.

In §2, as preliminaries we state some Propositions which give conditions for a Riemannian manifold to be of constant curvature.

In §3, we prove Theorem A. Theorem A is concerned with point-wise constant

Received May, 8, 1972.