INVARIANT SUBMANIFOLDS OF AN *f*-MANIFOLD WITH COMPLEMENTED FRAMES

By Minoru Kobayashi and Susumu Tsuchiya

Introduction. Recently, invariant hypersurfaces of a Kaehler manifold with constant holomorphic sectional curvature and invariant Einstein (or η -Einstein) submanifolds of normal contact or cosymplectic manifolds with constant ϕ -sectional curvature have been studied by several authors [2], [3], [4], [7]. Blair [1] has quite recently defined and studied S-manifolds and \mathcal{I} -manifolds which reduce, in special cases, to normal contact manifolds and cosymplectic manifolds respectively.

Generalizing the notion of η -Einstein contact manifolds, we shall define, in §1, η -Einstein S-manifolds and \mathfrak{T} -manifolds and obtain some formulas giving curvature tensors for S-manifolds and \mathfrak{T} -manifolds with constant f-sectional curvature. In §2, we shall define f-invariant and invariant submanifolds in an S-manifold or a \mathfrak{T} -manifold and study invariant η -Einstein submanifolds of codimension 2 in an S-manifold or a \mathfrak{T} -manifold of constant f-sectional curvature. In the last section, we shall study f-invariant hypersurfaces in a certain S-manifold or a \mathfrak{T} -manifold. The authors wish to express their deep gratitude to Professor S. Hokari for his kind guidances and encouragement.

1. *f*-manifolds with complemented frames.

~ (~)

Let $\tilde{M} = \tilde{M}^{2n+s}$ be a manifold with an \tilde{f} -structure of rank 2n. In the sequel, we assume that n > 1. If there exist in \tilde{M} vector fields $\xi(x=1, \dots, s)$ such that

(1. 1)
$$\begin{split} & \overbrace{x}^{\gamma(\xi)} = o_{xy}, \\ & \widehat{f} \tilde{\xi} = 0, \qquad \widetilde{\eta} \circ \widetilde{f} = 0, \\ & \widetilde{f}^2 = -1 + \sum_x \widetilde{\xi} \otimes \widetilde{\eta}, \\ & \widetilde{f}^2 = -1 + \sum_x \widetilde{\xi} \otimes \widetilde{\chi}, \end{split}$$

where $\tilde{\eta}$ are duals to $\tilde{\xi}$, then the \tilde{f} -structure is said to be with complemented frames $\tilde{\xi}, \dots, \tilde{\xi}$ or simply to be with complemented frames. If \tilde{M} has an \tilde{f} -structure with complemented frames, then there exists in \tilde{M} a Riemannian metric \tilde{C} such that

(1.2)
$$\widetilde{G}(\widetilde{X},\widetilde{Y}) = \widetilde{G}(\widetilde{f}\,\widetilde{X},\,\widetilde{f}\,\widetilde{Y}) + \widetilde{\varPhi}(\widetilde{Y},\,\widetilde{Y}),$$

Received August 13, 1971.