AN ARCLENGTH PROBLEM FOR *m*-FOLD SYMMETRIC UNIVALENT FUNCTIONS

BY SANFORD S. MILLER

1. Introduction. Let S denote the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic and univalent in the unit disk Δ : |z| < 1. Let S* denote the subclass of S for which f(z) is starlike, that is

$$\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > 0 \qquad (z \in \mathcal{A}).$$

Let C denote the subclass of S for which f(z) is convex, that is

$$\operatorname{Re}\left[\frac{zf''(z)}{f'(z)}+1\right] > 0 \quad (z \in \mathcal{A}).$$

Let K denote the subclass of S for which f(z) is close-to-convex, that is

$$\operatorname{Re}\left[\frac{zf'(z)}{h(z)}\right] > 0 \qquad (z \in \mathcal{A}).$$

where h(z) is starlike. These classes are related by the proper inclusions $C \subset S^* \subset K \subset S$.

A function f(z) analytic in Δ is said to be *m*-fold symmetric $(m=1, 2, \dots)$ if

$$f(e^{2\pi i/m}z) = e^{2\pi i/m}f(z).$$

In particular, every f(z) is 1-fold symmetric and every odd f(z) is 2-fold symmetric. Let S_m denote the subclass of S for which f(z) is *m*-fold symmetric. A simple argument shows that $f \in S_m$ is characterized by having a power series of the form

$$f(z) = z + a_{m+1} z^{m+1} + a_{2m+1} z^{2m+1} + \cdots$$

We similarly define S_m^* , C_m and K_m .

For $f \in S$ and 0 < r < 1, let

$$L_r(f) = \int_{|z|=r} |f'(z)| |dz|$$

Received September 10, 1971.