ON CANONICAL STRATIFICATIONS

By Akira Koriyama

§0. Introduction.

It is well-known that every compact manifold can be imbedded into a Euclidean *m*-space \mathbb{R}^m for some *m*. Furthermore Nash [7] proved that for a closed connected smooth manifold *M*, smoothly imbedded in \mathbb{R}^m , there is a polynomial map $f: \mathbb{R}^m \to \mathbb{R}^q$ for some *q* such that *M* is a connected component of $f^{-1}(0)$. A polynomial map *f* is an ordered set (g_1, g_2, \dots, g_q) of polynomial functions.

On the other hand, by a simple calculation, we have the following

PROPOSITION A. Every polynomial can be expressed in a form of determinant of a certain square matrix whose entries are monomials of degree 1 or 0. More precisely, for any polynomial function g: $\mathbb{R}^m \to \mathbb{R}$, there is a positive integer n and an affine imbedding φ of \mathbb{R}^m into the space M(n, n) of all $n \times n$ real matrices such that the following diagram is commutative:

(This was communicated to the author by T. Ishikawa).

REMARK. For the given polynomial map $f = (g_1, \dots, g_q)$: $\mathbb{R}^m \to \mathbb{R}^q$, we take the positive integer *n* common to all g_i .

On account of the above facts every closed connected smooth manifold can be imbedded into M(n, n) for some n and is expressed as the intersection of the qaffine *m*-spaces $\varphi_i(\mathbb{R}^m)$ and det⁻¹(0) in M(n, n). Thus it is meaningful to study the set of zeros of det: $M(n, n) \rightarrow \mathbb{R}$, which is the same as the set of singular matrices, or the set of matrices with rank r < n. More generally we consider, in this paper, the set of $n \times m$ real matrices, $n \leq m$, with rank r < n.

Received March 11, 1971.