PSEUDO-UMBILICAL SURFACES IN EUCLIDEAN SPACES

BY BANG-YEN CHEN

Recently, the author introduced the notion of αth curvatures of first and second kinds for surfaces in higher dimensional euclidean space [2, 3]. The main purpose of this paper is to study these curvatures more detail. In §1, we derive some integral formulas for the α th curvatures of first and second kinds. In §2, we get some applications of these formulas to pseudo-umbilical surfaces.

§1. Integral formulas for αth curvatures.

Let M^2 be an oriented closed Riemannian surface with an isometric immersion x: $M^2 \rightarrow E^{2+N}$. Let $F(M^2)$ and $F(E^{2+N})$ be the bundles of orthonormal frames of M^2 and E^{2+N} respectively. Let *B* be the set of elements $b=(p, e_1, e_2, \dots, e_{2+N})$ such that $(p, e_1, e_2) \in F(M^2)$ and $(x(p), e_1, \dots, e_{2+N}) \in F(E^{2+N})$ whose orientation is coherent with that of E^{2+N} , identifying e_i with $dx(e_i)$, $i=1, 2$. Then $B \rightarrow M^2$ may be considered as a principal bundle with fibre $O(2) \times SO(N)$ and \tilde{x} : $B \rightarrow F(E^{2+N})$ is naturally defined by $\tilde{x}(b) = (x(p), e_1, \dots, e_{2+N}).$

The structure equations of E^{2+N} are given by

$$
dx = \sum_{A} \omega'_{A} e_{A}, \qquad de_{A} = \sum_{B} \omega'_{A B} e_{B},
$$

(1)

$$
d\omega'_B = \sum_B \omega'_B \wedge \omega'_{BA}, \qquad d\omega'_{AB} = \sum_C \omega'_{AC} \wedge \omega'_{CB}, \qquad \omega'_{AB} + \omega'_{BA} = 0,
$$

$$
A, B, C, \dots = 1, 2, \dots, 2 + N,
$$

where ω'_{A} , ω'_{AB} are differential 1-forms on $F(E^{2+N})$. Let ω_A , ω_{AB} be the induced 1forms on *B* from ω'_A , ω'_{AB} by the mapping \tilde{x} . Then we have

(2)
$$
\omega_r = 0,
$$
 $\omega_{ir} = \sum_j A_{rij} \omega_j,$ $A_{rij} = A_{rji},$
 $i, j, \dots = 1, 2;$ $r, t, \dots = 3, \dots, 2+N.$

From (1), we get

(3)
$$
d\omega_i = \sum_j \omega_j \wedge \omega_{ji}, \qquad d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB},
$$

Received November 2, 1970.