PSEUDO-UMBILICAL SURFACES IN EUCLIDEAN SPACES

By BANG-YEN CHEN

Recently, the author introduced the notion of α th curvatures of first and second kinds for surfaces in higher dimensional euclidean space [2, 3]. The main purpose of this paper is to study these curvatures more detail. In §1, we derive some integral formulas for the α th curvatures of first and second kinds. In §2, we get some applications of these formulas to pseudo-umbilical surfaces.

§1. Integral formulas for ath curvatures.

Let M^2 be an oriented closed Riemannian surface with an isometric immersion $x: M^2 \rightarrow E^{2+N}$. Let $F(M^2)$ and $F(E^{2+N})$ be the bundles of orthonormal frames of M^2 and E^{2+N} respectively. Let B be the set of elements $b = (p, e_1, e_2, \dots, e_{2+N})$ such that $(p, e_1, e_2) \in F(M^2)$ and $(x(p), e_1, \dots, e_{2+N}) \in F(E^{2+N})$ whose orientation is coherent with that of E^{2+N} , identifying e_i with $dx(e_i)$, i=1, 2. Then $B \rightarrow M^2$ may be considered as a principal bundle with fibre $O(2) \times SO(N)$ and $\tilde{x}: B \rightarrow F(E^{2+N})$ is naturally defined by $\tilde{x}(b) = (x(p), e_1, \dots, e_{2+N})$.

The structure equations of E^{2+N} are given by

$$dx = \sum_{A} \omega'_{A} e_{A}, \qquad de_{A} = \sum_{B} \omega'_{AB} e_{B},$$

(1)

$$\begin{aligned} d\omega'_{B} = \sum_{B} \omega'_{B} \wedge \omega'_{BA}, \qquad d\omega'_{AB} = \sum_{C} \omega'_{AC} \wedge \omega'_{CB}, \qquad \omega'_{AB} + \omega'_{BA} = 0, \\ A, B, C, \cdots = 1, 2, \cdots, 2 + N, \end{aligned}$$

where ω'_A , ω'_{AB} are differential 1-forms on $F(E^{2+N})$. Let ω_A , ω_{AB} be the induced 1-forms on B from ω'_A , ω'_{AB} by the mapping \tilde{x} . Then we have

(2)
$$\omega_r = 0, \qquad \omega_{ir} = \sum_j A_{rij} \omega_j, \qquad A_{rij} = A_{rji},$$
$$i, j, \dots = 1, 2; \qquad r, t, \dots = 3, \dots, 2 + N.$$

From (1), we get

$$(3) d\omega_i = \sum_j \omega_j \wedge \omega_{ji}, d\omega_{AB} = \sum_C \omega_{AC} \wedge \omega_{CB},$$

Received November 2, 1970.