KÖDAI MATH. SEM. REP. 23 (1971), 343-350

ON THE CONCURRENT VECTOR FIELDS OF IMMERSED MANIFOLDS

By Kentaro Yano and Bang-yen Chen

Let \mathbb{R}^m be an *m*-dimensional Riemannian manifold¹) with covariant derivative D and let $x: \mathbb{M}^n \to \mathbb{R}^m$ be an immersion of an *n*-dimensional manifold \mathbb{M}^n into \mathbb{R}^m . A vector field X in \mathbb{R}^m over \mathbb{M}^n is called a *concurrent vector field*² if we have dx+DX=0, where dx denotes the differential of the immersion x. In particular, if X is a normal vector field of \mathbb{M}^n in \mathbb{R}^m , then the vector field X is called a *concurrent normal vector field*.

The main purpose of this paper is to study the behavior of the concurrent vector fields of immersed manifolds and also find a characterization of the concurrent vector fields with constant length.

§1. Preliminaries.

Let \mathbb{R}^m be an *m*-dimensional Riemannian manifold with covariant derivative D. By a frame e_1, \dots, e_m , we mean an ordered set of *m* orthonormal vectors e_1, \dots, e_m in the tangent space at a point of \mathbb{R}^m . The frame e_1, \dots, e_m defines uniquely a dual coframe $\overline{\omega}_1, \dots, \overline{\omega}_m$ in the cotangent space and vice versa. The fundamental theorem of local Riemannian geometry says that in a neighborhood U of a point p there exists uniquely a set of linear differential forms $\overline{\omega}_{AB}$ satisfying the conditions:

$$(1) \qquad \qquad \overline{\omega}_{AB} + \overline{\omega}_{BA} = 0$$

and

$$(2) d\bar{\omega}_A = \sum \bar{\omega}_B \wedge \bar{\omega}_{BA},$$

where here and in the sequel the indices A, B, \cdots run over the range $\{1, \cdots, m\}$. The linear differential forms $\overline{\omega}_{AB}$ are called the connection forms and the covariant derivative DX of a vector field $X = \sum X_A e_A$, is given by

Received October 31, 1970.

¹⁾ Manifolds, mappings, tensor fields and other geometric objects are assumed to be differentiable and of class C^{∞} .

²⁾ In [3], a vector field X is called a concurrent vector field if there exists a function f such that dx+D(fX)=0, but in this paper, we adopt the above definition.