PSEUDO-UMBILICAL SUBMANIFOLDS OF CODIMENSION 2

By Kentaro Yano and Shigeru Ishihara

Dedicated to Professor Hiraku Tôyama on his sixtieth birthday

The purpose of the present paper is to study the so-called pseudo-umbilical submanifolds of codimension 2 in Euclidean and Riemannian manifolds. Our main results appear in Propositions 2.3, 3.2, 3.3, 4.1, 4.2 and 4.3.

In \$1, we reformulate formulas for submanifolds of a general Riemannian manifold and, in \$2, we specialize these formulas to those for submanifolds of codimension 2 of a Euclidean or a Riemannian manifold.

We study, in §3, pseudo-umbilical submanifolds of codimension 2 in a space of constant curvature and, in §4, those in a Euclidean space. In the last section 5, we prove, for the completeness, some of lemmas which are used in the paper.

§1. Formulas for submanifolds.

As we are going to study some special kinds of submanifolds, we would like first of all to reformulate formulas for submanifolds of a Riemannian manifold for the later use. Let M^n be an *n*-dimensional manifold¹⁾ differentiably immersed as a submanifold of an *m*-dimensional Riemannian manifold M^m , where n < m, and denote by $x: M^n \to M^m$ the immersion. Denote by $B: T(M^n) \to T(M^m)$ the differential of the mapping x, i.e., B = dx, where $T(M^n)$ and $T(M^m)$ are the tangent bundles of M^n and M^m respectively. On putting $T(M^n, M^m) = BT(M^n)$, the set of all vectors tangent to $x(M^n)$, we see by definition that $B: T(M^n) \to T(M^n, M^m)$ is an isomorphism, since $x: M^n \to M^m$ is an immersion. The set of all vectors normal to $x(M^n)$ forms a vector bundle $N(M^n, M^m)$ over $x(M^n)$, which is the normal bundle of $x(M^n)$. The vector bundle over M^n , which is induced by x from $N(M^n, M^m)$ is denoted by $N(M^n)$ and called the *normal bundle* of M^n with respect to the immersion x. We now denote by $C: N(M^n) \to N(M^n, M^m)$ the natural isomorphism.

We now introduce the following notations: $\mathcal{T}_{s}^{r}(M^{n})$ is the space of all tensor fields of type (r, s), i.e., of contravariant degree r and covariant degree s, associated with $T(M^{n})$. $\mathcal{T}(M^{n}) = \sum_{r,s} \mathcal{T}_{s}^{r}(M^{n})$ is the space of all tensor fields associated with $T(M^{n})$. $\mathcal{T}_{s}^{r}(M^{n})$ and $\mathcal{T}(M^{n}) = \sum_{r,s} \mathcal{T}_{s}^{r}(M^{n})$ denote the respective spaces associated

Received May 8, 1969.

¹⁾ Manifolds, mappings, functions, tensor fields and any other geometric objects we discuss are assumed to be differentiable and of class C^{∞} . We restrict ourselves only to connected submanifolds of dimension $n \ge 2$.