KÖDAI MATH. SEM. REP. 21 (1969), 1-15

ON A SYSTEM OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH A TURNING POINT

By Minoru Nakano

§1. Introduction.

1° The system of differential equations to be discussed here is

(1.1)
$$\varepsilon^{\sigma} \frac{dY}{dx} = A(x, \varepsilon) Y,$$

in which σ is a positive integer, ε is a small complex parameter and $A(x, \varepsilon)$ is an *n*-by-*n* matrix function holomorphic in both variables in the domain \mathfrak{D} defined by the inequalities

(1. 2)
$$\mathfrak{D}: |x| \leq x_0, \quad 0 < |\varepsilon| \leq \varepsilon_0, \quad |\arg \varepsilon| \leq \theta_0.$$

We assume that the matrix $A(x, \epsilon)$ is expressed by the asymptotic expansion such that

(1.3)
$$A(x,\varepsilon) \sim \sum_{r=0}^{\infty} A_r(x)\varepsilon^r, \quad \varepsilon \to 0$$

is uniformly valid in $|x| \leq x_0$ and $|\arg \varepsilon| \leq \theta_0$. The coefficients $A_r(x)$ are then necessarily holomorphic in $|x| \leq x_0$ (Wasow [12]).

Sibuya [8] has proved that the local asymptotic analysis, as $\epsilon \rightarrow 0$, of such differential equations can be reduced to the study of the special case that $A(x, \epsilon)$ satisfies the following hypothesis:

 $A_0(0)$ is nilpotent and of a Jordan canonical form.

It will therefore be assumed, from now on, that $A_0(0)$ has this special property. In this paper we investigate the case that $A_0(0)$ has *n* Jordan blocks. As $A_0(0)$ is nilpotent, which means that $A_0(0)=0$, the leading matrix $A_0(x)$ in (1.3) must be

with p a positive integer, G(x) holomorphic at x=0, and $G(0) \neq 0$.

Assumption 1.

of the form

$$A_0(x) = x^p G(x),$$

Received May 9, 1968.