A SECOND THEOREM OF CONSISTENCY FOR ABSOLUTE SUMMABILITY BY DISCRETE RIESZ MEANS

By T. Pati

1.1. Definitions and notations. Let $\sum a_n$ be any given infinite series, and let $\{\lambda_n\}$ be a monotonic increasing sequence of positive numbers, tending to infinity with *n*. Let us write

$$A_{\lambda}(\omega) = A_{\lambda}^{0}(\omega) = \sum_{\lambda_{n} \leq \omega} a_{n},$$
$$A_{\lambda}^{r}(\omega) = \sum_{\lambda_{n} \leq \omega} (\omega - \lambda_{n})^{r} a_{n}, \qquad r > 0.$$

Let us write $R_{\lambda}^{r}(\omega) = A_{\lambda}^{r}(\omega)/\omega^{r}$, $r \ge 0$. $\sum a_{n}$ is said to be absolutely summable by Riesz means of type λ_{n} and order r, or summable $|R, \lambda_{n}, r|, r \ge 0$, if

$$R^{r}_{\lambda}(\omega) \in BV(k, \infty), 1$$

where k is some finite positive number.²⁾ We say that $\sum a_n$ is absolutely summable by *discrete Riesz means of type* λ_n and order r, or summable $|R^*, \lambda_n, r|, r \ge 0$, if

$$\{\Omega_n\} \equiv \{R_{\lambda}^r(\lambda_n)\} \in BV.^{3}$$

By definition, summability $|R, \lambda_n, 0|$ and summability $|R^*, \lambda_n, 0|$ are the same as absolute convergence.

Let P and Q be any two methods of summability. Then, by $P \subset Q'$ we mean that any series which is summable P is also summable Q. By $P \sim Q'$ we mean that $P \subset Q$ as well as $Q \subset P$.

It is easily seen that

$$R, \lambda_n, r | \subset | R^*, \lambda_n, r |, r \ge 0.$$

Throughout, for any sequence $\{f_n\}$, we shall write $\Delta f_n = f_n - f_{n+1}$, and K will denote a positive constant, not necessarily the same at each occurrence.

1.2. It is known that $|R, \lambda_n, 1| \sim |R^*, \lambda_n, 1|$.⁴⁾ For summability $|R, \lambda_n, r|$ the

Received April 3, 1968.

2) Obrechkoff (4), (5).

3) By $\{f_n\} \in BV$ we mean that $\sum_n |f_n - f_{n-1}| < \infty$.

4) A proof of this by the present author has been quoted in Iyer [2].

¹⁾ By $f(x) \in BV(h, k)$, we mean that f(x) is a function of bounded variation over (h, k).