A SECOND THEOREM OF CONSISTENCY FOR ABSOLUTE SUMMABILITY BY DISCRETE RIESZ MEANS

BY T. PATI

1.1. Definitions and notations. Let $\sum a_n$ be any given infinite series, and let *{λn }* be a monotonic increasing sequence of positive numbers, tending to infinity with *n.* Let us write

$$
A_{\lambda}(\omega) = A_{\lambda}^{\circ}(\omega) = \sum_{\lambda_n \leq \omega} a_n,
$$

$$
A_{\lambda}^r(\omega) = \sum_{\lambda_n < \omega} (\omega - \lambda_n)^r a_n, \qquad r > 0
$$

Let us write $R_1^r(\omega) = A_2^r(\omega)/\omega^r$, $r \ge 0$. $\sum a_n$ is said to be absolutely summable by Riesz means of *type* λ_n and *order* r, or summable $\{R, \lambda_n, r\}, r \geq 0$, if

$$
R_{\lambda}^r(\omega) \in BV(k,\,\infty),\,1
$$

where *k* is some finite positive number.²⁾ We say that $\sum a_n$ is absolutely summable by *discrete Riesz means of type* λ_n and order *r*, or summable $\vert R^*, \lambda_n, r \vert, r \ge 0$, if

$$
\{ \Omega_n \} \equiv \{ R^r_{\lambda}(\lambda_n) \} \in BV^{(3)}
$$

By definition, summability $\vert R, \lambda_n, 0 \vert$ and summability $\vert R^*, \lambda_n, 0 \vert$ are the same as absolute convergence.

Let *P* and *Q* be any two methods of summability. Then, by ' $P \subset Q$ ' we mean that any series which is summable P is also summable Q. By $P \sim Q'$ we mean that $P \subset Q$ as well as $Q \subset P$.

It is easily seen that

$$
R, \lambda_n, r \in [R^*, \lambda_n, r], r \geq 0.
$$

Throughout, for any sequence ${f_n}$, we shall write $\Delta f_n = f_n - f_{n+1}$, and K will denote a positive constant, not necessarily the same at each occurrence.

1.2. It is known that $\vert R, \lambda_n, 1 \vert \sim \vert R^*, \lambda_n, 1 \vert$.⁴⁾ For summability $\vert R, \lambda_n, r \vert$ the

Received April 3, 1968.

2) Obrechkoff (4), (5).

3) By $\{f_n\} \in BV$ we mean that $\sum n |f_n - f_{n-1}| < \infty$.

4) A proof of this by the present author has been quoted in Iyer [2].

¹⁾ By $f(x) \in BV(h, k)$ we mean that $f(x)$ is a function of bounded variation over $(h, k).$