KÖDAI MATH. SEM. REP. 20 (1968), 414-436

ON CERTAIN OPERATORS ASSOCIATED WITH TENSOR FIELDS

By Kentaro Yano and Mitsue Ako

Dedicated to Professor Shisanji Hokari on his sixtieth birthday

Introduction.

The theory of differential concomitants has been developed by Frölicher, Nijenhuis [1], [2], [6], Schouten [9] and others.¹⁾

Schouten [9] introduced a concomitant [P, Q] formed with tensor fields P and Q of type (p+1, 0) and (q+1, 0) respectively, which is a tensor field of type (p+q+1, 0).

Nijenhuis [6] introduced a concomitant [S, T] formed with a vector s-form S and a vector t-form T which is a vector (s+t)-form. Frölicher and Nijenhuis [1], [2], also introduced a concomitant $[S, \omega]$ formed with a vector s-form S and a scalar t-form ω which is a scalar (s+t)-form.

On the other hand it was found that, in the study of a differentiable manifold M with an almost complex structure F, the tensor

$$N(X, Y) = \frac{1}{2} [F, F](X, Y)$$

= [FX, FY]-F[X, FY]-F[FX, Y]+F²[X, Y]

introduced by Nijenhuis [5] plays an important part. It is now well known [4] that it is necessary and sufficient for an almost complex manifold to be complex that the Nijenhuis tensor N formed with F vanishes identically.

Nijenhuis [6] proved also that

$$[F, N] = 0, [N, N] = 0$$

and it seemed that there is no concomitant formed only with F and its partial derivatives and being essentially distinct from N.

However Walker [13] found a tensor field of type (1, 4) involving the second partial derivatives of an almost complex structure F.

Willmore [14] introduced a tensor field W of type (1, 4)

$$W = [F \land N, N] = [F, N \land N]$$

Received February 22, 1968.

¹⁾ The numbers between brackets refer to the Bibliography at the end of the paper.