ON $|C, 1|_k$ SUMMABILITY FACTORS OF FOURIER SERIES

By Niranjan Singh

1.1. Let $\sum a_n$ be a given infinite series with its *n*-th partial sum s_n , and let $t_n = t_n^0 = na_n$. By $\{\sigma_n^\alpha\}$ and $\{t_n^\alpha\}$ we denote the *n*-th Cesàro means of order α ($\alpha > -1$) of the sequences $\{s_n\}$ and $\{t_n\}$ respectively. The series $\sum a_n$ is said to be absolutely summable (C, α) with index *k*, or simply summable $|C, \alpha|_k$ ($k \ge 1$), if

(1.1.1)
$$\sum n^{k-1} |\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}|^k < \infty.$$

Summability $|C, \alpha|_1$ is the same as summability $|C, \alpha|$. Since

$$t_n^{\alpha} = n(\sigma_n^{\alpha} - \sigma_{n-1}^{\alpha}),$$

condition (1.1.1) can also be written as

(1. 1. 2)
$$\sum \frac{|t_n^{\alpha}|^k}{n} < \infty.$$

A sequence $\{\lambda_n\}$ is said to be convex if $\Delta^2 \lambda_n \ge 0$, $n=1, 2, \cdots$, where $\Delta \lambda_n = \lambda_n - \lambda_{n+1}$ and $\Delta^2 \lambda_n = \Delta(\Delta \lambda_n)$.

1.2. Let f(t) be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Let the fourier series of f(t) be given by

$$f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=0}^{\infty} A_n(t),$$

where we can assume, without loss of generality, that $a_0=0$.

We shall use throughout this paper the following notations and identities:

$$\varphi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) - 2f(x) \},$$

$$D_n(t) = \frac{1}{2} + \cos t + \cos 2t + \dots + \cos nt = \frac{\sin (n+1/2)t}{2\sin (t/2)},$$

$$s_n(x) = \sum_{\nu=0}^n A_\nu(x) = \frac{1}{\pi} \int_0^\pi \{ f(x+t) + f(x-t) \} D_n(t) dt,$$

$$s_n(x) - f(x) = \frac{1}{\pi} \int_0^\pi \{ f(x+t) + f(x-t) - 2f(x) \} D_n(t) dt = \frac{2}{\pi} \int_0^\pi \varphi(t) D_n(t) dt,$$

and

Received January 12. 1967.