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CONVERGENCE OF NORMAL OPERATORS
By BurTON RODIN AND LEO SARIO

The first purpose of the present paper is to show that elementary linear opera-
tor theory can be used to give an elegant proof of the fundamental existence theo-
rem of principal functions corresponding to given normal operators L [17]. When
L is defined by a limiting process a harmonic function may also be obtained by
applying the main theorem to each approximating operator and forming a limit of
resulting functions. It is important to know when these processes commute. We
shall give a general criterion to this effect and show that it applies to operators L,
and L;. Earlier literature on normal operators and their applications is compiled in
the Bibliography.

1. The g-lemma. We start with a slight sharpening of the g-lemma [17]:

LEMMA 1. Let K be a compact subset of a Riemann surface W. There exists
a positive constant q<1 such that all harmonic functions u on W satisfy the in-
equality

(1) qinf u+(1—q) max u=u|K=(1—q) min #+q sup u.
w K K w

Proof. Harnack’s inequality for positive harmonic functions » in the unit disk
reads
1—|z|

TF 2l v(0)=v(z) =

1+ |z
1—|z]

v(0).

An easy consequence is that to any compact set K in a Riemann surface W there
corresponds a constant ¢>0 such that

(2) c—lg% =

for all points P and Q in K and all positive harmonic functions ». To see this
note first that K may be assumed to be connected, thanks to the existence of an
exhaustion for W. K can be covered by a finite number # of parametric disks <V,
with centers V, such that the subdisks <V, corresponding to {z: |2|<1/2} also form
an open cover of K. By Harnack’s inequality 1/3<o(P;)/v(Q;)<3 for P;e <V}, and conse-

Received September 24, 1966.

The work was sponsored by the U.S. Air Force, Grant AF49(688)1345, Stanford Uni-
versity, and the U.S. Army Research Office—Durham, Grant DA-AROD-31-124-G742, Uni-
versity of California, Los Angeles.

165



