| N, pn| SUMMABILITY FACTORS OF INFINITE SERIES

By S. M. MazHAR

1.1. Let 3} @, be a given infinite series with s, as its z-th partial sum. Also
let {p.} be a sequence of positive real constants such that P, tends to infinity with
n, where P,=X".p. We write
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n v=0
_ The series 3] @ is said to be absolutely summable (N, pn) or, simply summable
[N, pnl, if the sequence {#.} is of bounded variation.
If for some finite s
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as n—oo, then 3] a, is said to be strongly summable (N, pn) or, simply summable
[N, p.]. If

Z 1,1 5,=0(Py),

as nw—oo, then X a, is said to be bounded [N, p.].
Writing p,=1/n in the above definitions we get summability |R, log =, 1],?
summability [R, log %, 1] and bounded [R, log %, 1] respectively.

1. 2. Suppose Y @, is summable |N, p.|. Then, since

Sn+1Pn+ 1=tni1Prns1—1aPn,
we have
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1) Summability |R, log #, 1] is equivalent to the summability |N, 1/x].
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