$|\overline{N}, p_n|$ SUMMABILITY FACTORS OF INFINITE SERIES

By S. M. Mazhar

1. 1. Let $\sum a_n$ be a given infinite series with s_n as its *n*-th partial sum. Also let $\{p_n\}$ be a sequence of positive real constants such that P_n tends to infinity with *n*, where $P_n = \sum_{\nu=0}^n p_{\nu}$. We write

(1. 1. 1)
$$t_n = \frac{1}{P_n} \sum_{\nu=0}^n p_{\nu} s_{\nu}.$$

The series $\sum a_n$ is said to be absolutely summable (\overline{N}, p_n) or, simply summable $|\overline{N}, p_n|$, if the sequence $\{t_n\}$ is of bounded variation.

If for some finite s

$$\sum_{\nu=1}^n |s_{\nu}-s| p_{\nu}=o(P_n),$$

as $n \to \infty$, then $\sum a_n$ is said to be strongly summable (\overline{N}, p_n) or, simply summable $[\overline{N}, p_n]$. If

$$\sum_{\nu=1}^n |s_\nu| p_\nu = O(P_n),$$

as $n \to \infty$, then $\sum a_n$ is said to be bounded $[\overline{N}, p_n]$.

Writing $p_n = 1/n$ in the above definitions we get summability $|R, \log n, 1|^{1}$ summability $[R, \log n, 1]$ and bounded $[R, \log n, 1]$ respectively.

1. 2. Suppose $\sum a_n$ is summable $|\bar{N}, p_n|$. Then, since

$$s_{n+1}p_{n+1} = t_{n+1}P_{n+1} - t_nP_n$$

we have

$$\sum_{1}^{m} |s_{n+1}| p_{n+1} = \sum_{1}^{m} |\mathcal{A}t_n P_n|$$

$$\leq \sum_{1}^{m} P_n |\mathcal{A}t_n| + \sum_{1}^{m} |t_{n+1}| |\mathcal{A}P_n|$$

$$= O(P_m) + O\left(\sum_{1}^{m} |\mathcal{A}P_n|\right)$$

Received September 27, 1965.

¹⁾ Summability $|R, \log n, 1|$ is equivalent to the summability $|\overline{N}, 1/n|$.