MINIMAL SLIT REGIONS AND LINEAR OPERATOR METHOD

ΒΥ ΚÔΤΑRΟ ΟΙΚΑΨΑ

1. Let Ω be a plane region containing the point at infinity. Let \mathfrak{F}_{Ω} be the family of all the univalent functions f on Ω having the expansion

$$(1) f(z) = z + \frac{c}{z} + \cdots$$

about ∞ . The function maximizing (minimizing) Re *c* in $\mathfrak{F}_{\mathfrak{g}}$ exists and is determined uniquely, which we denote by $\varphi_{\mathfrak{g}}(\psi_{\mathfrak{g}}, \text{ resp.})$.

The image region $\phi_{\varrho}(\Omega)$ ($\phi_{\varrho}(\Omega)$) is a horizontal (vertical) parallel slit plane. Conversely, however, an arbitrary horizontal (vertical) parallel slit plane can not be, in general, the image of an Ω under $\varphi_{\varrho}(\psi_{\varrho})$; in fact the measure of $\varphi_{\varrho}(\Omega)^c$ and $\psi_{\varrho}(\Omega)^c$ vanish. Accordingly, with Koebe, we introduce the following:

DEFINITION. A horizontal (vertical) parallel slit plane Δ is said to be *minimal* if $\Delta = \varphi_{\mathcal{Q}}(\Omega)$ ($\Delta = \psi_{\mathcal{Q}}(\Omega)$, resp.) for an Ω containing ∞ .

The minimality of slit regions is characterized by moduli of quadrilaterals (Grötzsch [2]) or extremal length (Jenkins [3]). From the point of view of the latter a number of interesting properties are derived in Suita's paper in these Reports [8].

The linear operator method due to Sario [6] (see also Chapter III of the book by Ahlfors-Sario [1]) gives us another approach to φ_a and φ_a . From this a characterization of minimality is derived, which is rather similar to the original one due to Koebe [4]. It is the purpose of the present paper to show how to use this method to prove alternatively a part of Suita's results mentioned above.

2. We begin with reviewing the definition of the normal linear operators L_0 and L_1 in Ahlfors-Sario [1].

Let W be an open Riemann surface, let V be a regularly imbedded non-compact subregion with compact relative boundary α . For any real analytic function f on α , consider the problem of constructing the function u such that

(2) harmonic on $V \cup \alpha$, u=f on α .

If V is the interior of a compact bordered surface we can assign the behavior of u on $\beta = (border of V) - \alpha$ so that u may be determined uniquely. For our purpose the following two are necessary:

Received March 22, 1965.