ON COMPLEX ANALYTIC MAPPINGS BETWEEN TWO ULTRAHYPERELLIPTIC SURFACES

By Mitsuru Ozawa

§ 1. Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^2 = G(z)$ and $u^2 = g(w)$, respectively, where G and g are two entire functions each of which has no zero other than an infinite number of simple zeros. Let φ be an analytic mapping from R into S. Let \mathfrak{P}_S be the projection map $(w, u) \rightarrow w$. Let Φ be the sifted mapping $\mathfrak{P}_S \circ \varphi$, then Φ is an entire function on R. Let $T(r, \Phi)$ be the Nevanlinna-Selberg characteristic function of Φ . Let N(r, R) be the quantity $N(r, \mathfrak{X})$ defined by Selberg [8], which is essentially one half of the integrated Euler characteristic of R defined by Sario [5].

Definition 1. If $T(r, \Phi)$ satisfies the inequality

$$\overline{\lim}_{r\to\infty} \frac{N(r,R)}{T(r,\Phi)} > 2,$$

then we say φ a semi-degenerate analytic mapping from R into S.

Let \mathfrak{P}_R be the projection map $(z, y) \rightarrow z$. If φ satisfies $\mathfrak{P}_S \circ \varphi(p) = \mathfrak{P}_S \circ \varphi(q)$ for $p \neq q$, $\mathfrak{P}_R p = \mathfrak{P}_R q$, then we say that φ satisfies the rigidity of projection map.

Definition 2. If φ satisfies the rigidity of projection map, then we say φ a rigid analytic mapping from R into S.

In the present paper we shall prove the following somewhat interesting

Theorem 1. If φ exists and is a rigid analytic mapping from R into S, then there exists a suitable entire function h(z) of z in such a manner that $f(z)^2G(z) = g \circ h(z)$ for a suitable entire function f(z) of z.

If φ is a semi-degenerate analytic mapping from R into S, then it is a rigid analytic mapping. If Φ is not single-valued with respect to z, we have $N(r,R) < 2T(r,\Phi) + O(1)$ by Selberg's ramification theorem and hence

$$\overline{\lim_{r\to\infty}} \frac{N(r,R)}{T(r,\Phi)} \le 2$$

holds in our ultrahyperelliptic case. This contradicts the semi-degeneracy. Thus Φ must be single-valued for z, which is the desired rigidity of φ .

Received February 11, 1965.