REMARKS ON UNRAMIFIED ABELIAN COVERING SURFACES OF A CLOSED RIEMANN SURFACE

By Mitsuru Ozawa

1. Introduction. Let *R* be a closed Riemann surface of genus *p* and *W* be an unramified unbounded regular covering surface of *R* whose covering transformation group $\Gamma(W)$ is abelian. Let C_{2i-1}, C_{2i} $(i=1, \dots, p)$ be 2p canonical homology basis of *R*. Then $\Gamma(W)$ may be considered as an abelian group generated by C_i $(i=1, \dots, 2p)$ with a number of defining relations among them:

$$\sum_{i=1}^{2p} r_{ki} C_i = 0, \qquad k = 1, ..., q \ (0 \le q \le 2p)$$

with integral coefficients r_{ki} , whose $q \times 2p$ matrix

 $(r_{k\imath})$

is of rank q. The rank r of $\Gamma(W)$ is defined by 2p-q.

Mori [1] proved the following theorem for this surface W:

- (1). $W \in O_G$ if and only if $r \leq 2$.
- (2). $W \in O_{AD}$.
- (3). $W \in O_{AB}$ if there exists, for each $i=1, \dots, p$, a relation of the form

$$r_{2i-1}C_{2i-1}+r_{2i}C_{2i}=0$$

with not both vanishing integral coefficients r_{2i-1} and r_{2i} . Especially this is the case, when W consists of a (finite or infinite) number of replicas of a planar surface obtained from R by cutting along p disjoint non-dividing loop cuts.

Let O_{MD} denote the class of Riemann surfaces not tolerating non-constant single-valued analytic function with a finite spherical area. Let O_{AB}° denote the class of Riemann surfaces any subregion of which tolerates no non-constant bounded analytic function whose real part vanishes continuously on its relative boundary.

In the present paper we shall prove the following theorem:

THEOREM 1. Let W be an unramified unbounded regular abelian covering surface of R. If W satisfies the condition in (3) and $r \ge 3$, then

$$W \in O^{\circ}_{AB} \frown O_{MD}.$$

Received November 14, 1963.