ON THE ENVELOPE OF HOLOMORPHY OF A GENERALIZED TUBE IN C^n

By Joji Kajiwara

In 1937 Stein [10] proved that the envelope of holomorphy of a tube-domain in C^{2} coincides with its envelope of convexity. We can find no difficulty in extending the above Stein's proof to the case in C^{n} . In 1938 Bochner [2] obtained the above Stein's Theorem quite independently in C^{n} . Later Hitotumatu [7] gave a new and elegant proof and Bremermann [5] extended the above Stein's Theorem in complex Banach spaces.

The main purpose of the present paper is to extend the above Stein's Theorem to a generalized tube in C^n . The main method is based on the Levi's problem and the convergence theorem concerning the domain of holomorphy.

For two *n*-tuples $x=(x_1, x_2, \dots, x_n)$ and $y=(y_1, y_2, \dots, y_n)$ of real numbers, we shall use the notation z=x+iy by putting $z=(z_1, z_2, \dots, z_n)$ and $z_j=x_j+iy_j$ $(1 \le j \le n)$. The space of *n* real variables x_1, x_2, \dots and x_n is denoted by R_x^n and the space of *n* complex variables z_1, z_2, \dots and z_n is denoted by C_z^n or simply by C^n .

Let A and B be subsets of R_x^n and R_y^n respectively. Then $A \times B$ is called a *generalized tube* in C_z^n where z=x+iy. A is called its *real base* and B is called its *imaginary base*. $A \times R_y^n$ is called simply a *tube* in C_z^n .

Concerning a tube in C^n we have the following theorem [10].

STEIN'S THEOREM. The envelope of holomorphy of an open connected tube in C^n coincides with its geometrical envelope of convexity.

LEMMA 1. If an open connected generalized tube $A \times \{(y_1, y_2, \dots, y_n); a_j < y_j < b_j \ (j=1, 2, \dots, n)\}$ is a domain of holomorphy, then $A \times \{(y_1, y_2, \dots, y_n); a_j+c_j < y_j < b_j+c_j \ (j=1, 2, \dots, n)\}$ is also a domain of holomorphy for any real number c_j .

Proof. Since the holomorphic mapping ϕ defined by $\phi(z) = (z_1 + ic_1, z_2 + ic_2, \dots, z_n + ic_n)$ is a bi-holomorphic mapping of the closure of the former onto that of the latter, we have our Lemma. q. e. d.

LEMMA 2. If an open connected generalized tube $T=A \times \{(y_1, y_2, \dots, y_n); a_j < y_j < b_j (j=1, 2, \dots, n)\}$ is not a domain of holomorphy, then for any positive integer k $(1 \le k \le n)$ and for any real number d_k such that $(a_k+b_k)/2 < d_k \le b_k$, $T_1=T \cap [A$

Received December 7, 1962.