ON EVANS' SOLUTION OF THE EQUATION $\Delta u = Pu$ ON RIEMANN SURFACES

By Mitsuru Nakai

Introduction.

Let *R* be an open Riemann surface. By a density P(z) on *R* we mean a nonnegative continuously differentiable function of local parameters $z=x+\sqrt{-1}y$ such that the expression P(z)dxdy is invariant under the change of local parameters *z*. Then we can consider the elliptic partial differential equation

(E)
$$\Delta u(z) = P(z)u(z), \qquad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},$$

which is invariantly defined on R. Throughout this paper, we always assume

$P(z)dxdy \equiv 0$

on *R*. By a solution *u* of (E) on an open subset *D* of *R* we mean that *u* is twice continuously differentiable function satisfying (E) on *D*.¹⁾ An *Evans' solution* e(z) of (E) on *R* is a solution of (E) on *R* satisfying

$$\lim_{R\ni z\to A_{\infty}} e(z) = \infty,$$

where A_{∞} is the Alexandroff's ideal boundary point of R. The purpose of this paper is to give a sufficient condition for the existence of Evans' solution of (E) on R.

Let $(R_n)_{n=0}^{\infty}$ be a normal exhaustion of R and $\Omega_{0,n}$ (n>0) be the continuous function on $\overline{R}_n - R_0$ such that $\Omega_{0,n}$ is a solution of (E) on $R_n - \overline{R}_0$ with $\Omega_{0,n} = 1$ on ∂R_0 and $\Omega_{0,n} = 0$ on ∂R_n . Then there exists a continuous function Ω_0 on $R - R_0$ such that Ω_0 is a solution of (E) on $R - \overline{R}_0$ with $\Omega_0 = 1$ on ∂R_0 and

$$\Omega_0(z) = \lim_{n \to \infty} \Omega_{0,n}(z) > 0$$

on $R-R_0$. Clearly $\mathcal{Q}_0(z)$ does not depend on the special choice of exhaustions $(R_n)_{n=1}^{\infty}$.

We consider the condition

(
$$\Omega$$
) $\sigma = \inf_{z \in R - R_0} \Omega_0(z) > 0.$

It is easy to see that the condition (\mathcal{Q}) does not depend on the special choice of

Received September 10, 1962.

¹⁾ For fundamental properties of solutions of (E), refer to the list in pp. 152–153 in [4].