ON EVANS' SOLUTION OF THE EQUATION *Δu=Pu* **ON RIEMANN SURFACES**

BY MITSURU NAKAI

Introduction.

Let *R* be an open Riemann surface. By a density $P(z)$ on *R* we mean a nonnegative continuously differentiable function of local parameters $z=x+\sqrt{-1}y$ such that the expression $P(z)dxdy$ is invariant under the change of local parameters z. Then we can consider the elliptic partial differential equation

(E)
$$
\Delta u(z) = P(z)u(z), \qquad \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2},
$$

which is invariantly defined on R . Throughout this paper, we always assume

$P(z)dxdy \equiv 0$

on *R.* By a solution *u* of *(E)* on an open subset *D* of *R* we mean that *u* is twice continuously differentiable function satisfying *(E)* on Z).^υ An *Evans' solution e(z)* of (E) on R is a solution of (E) on R satisfying

$$
\lim_{R\ni z\to A_\infty}e(z)=\infty,
$$

where A_{∞} is the Alexandroff's ideal boundary point of R. The purpose of this paper is to give a sufficient condition for the existence of Evans' solution of *(E)* on *R.*

Let $(R_n)_{n=0}^{\infty}$ be a normal exhaustion of *R* and $\Omega_{0,n}$ (*n*>0) be the continuous function on $\bar{R}_n - R_0$ such that $\Omega_{0,n}$ is a solution of (E) on $R_n - \bar{R}_0$ with $\Omega_{0,n} = 1$ on ∂R_0 and $\Omega_{0,n} = 0$ on ∂R_n . Then there exists a continuous function Ω_0 on $R - R_0$ such that \varOmega_0 is a solution of (E) on $R-\bar R_0$ with $\varOmega_0\!=\!1$ on ∂R_0 and

$$
\Omega_0(z) = \lim_{n \to \infty} \Omega_{0,n}(z) > 0
$$

on *R—Ro.* Clearly *Ω⁰ (z)* does not depend on the special choice of exhaustions $(R_n)_{n=1}^{\infty}$

We consider the condition

$$
\sigma = \inf_{z \in R - R_0} \Omega_0(z) > 0.
$$

It is easy to see that the condition *(Ω)* does not depend on the special choice of

Received September 10, 1962.

¹⁾ For fundamental properties of solutions of (E) , refer to the list in pp. 152-153 in [4].