ECKMANN-FRÖLICHER CONNEXIONS ON ALMOST ANALYTIC SUBMANIFOLDS

BY KENTARO YANO

1. Almost analytic submanifolds.

We consider a 2*m*-dimensional differentiable manifold M_{2m} of class C^{∞} and with an almost complex structure F_{j}^{h} :

$$(1.1) F_{i}^{i}F_{i}^{h} = -A_{i}^{h},$$

where A_j^h denotes a unit tensor and the indices h, i, j, \cdots run over the range $1, 2, \cdots, 2m$. We call such a manifold an almost complex space.

It is well known that the condition for an almost complex structure to be induced from a complex structure is the vanishing of the Nijenhuis tensor [4]:

$$(1.2) N_{ii}{}^{h} = F_{i}{}^{l}\partial_{i}F_{i}{}^{h} - F_{i}{}^{l}\partial_{i}F_{j}{}^{h} - (\partial_{i}F_{i}{}^{l} - \partial_{i}F_{i}{}^{l})F_{i}{}^{h},$$

where ∂_t denotes the partial differentiation with respect to the coordinates ξ^t . We call a complex space an almost complex space with vanishing Nijenhuis tensor.

We now consider a 2n-dimensional submanifold M_{2n} (2m > 2n):

$$\xi^h = \xi^h(\eta^a)$$

of class C^{∞} where the indices a, b, c, \cdots run over the range $1, 2, \cdots, 2n$. If the transform by F_i^h of any vector tangent to M_{2n} is still tangent to M_{2n} , we call M_{2n} an almost analytic submanifold. A necessary and sufficient condition for M_{2n} to be almost analytic is

$$(1.4) F_{i}{}^{h}B_{i}{}^{i} = {}^{\prime}F_{i}{}^{a}B_{a}{}^{h},$$

where ${}^{\prime}F_{b}{}^{a}$ is a certain tensor of M_{2n} and

$$B_a{}^h = \partial_a \xi^h; \qquad \partial_a = \partial/\partial \eta^a.$$

From (1.1) and (1.4), we find

$$(1.5) 'F_c{}^{b\prime}F_b{}^a = -A_c^a.$$

Thus, we have [3]

THEOREM 1.1. An almost analytic submanifold in an almost complex space is an almost complex space.

On the other hand, by a straightforward computation, we have

$$(1.6) B_c{}^j B_b{}^i N_{ji}{}^h = {}^\prime N_{cb}{}^a B_a{}^h,$$

Received December 25, 1961.