GENERAL CONNECTIONS ATA AND THE PARALLELISM OF LEVI-CIVITA

BY TOMINOSUKE OTSUKI

In a previous paper [10], the author showed that for a normal general connection $\Gamma^{(1)}$ of an *n*-dimensional differentiable manifold \mathfrak{X} we can define naturally two normal general connections Γ and Γ called the contravariant part and the covariant part of Γ respectively. In the present paper, the author will show that we can define products of a general connection and tensor fields of type (1, 1) on \mathfrak{X} satisfying the associative law. According to this concept, $\Gamma = Q\Gamma$ and $\Gamma = \Gamma Q$, where Q is the inverse of P in the sense that $Q | P(T(\mathfrak{X})) = (P | P(T(\mathfrak{X})))^{-1}$ and $Q | P^{-1}(0) = P | P^{-1}(0)$ at each point of \mathfrak{X} . As an application, he will investigate a normal general connection $A\Gamma A$, where Γ is a metric regular general connection with respect to a metric tensor, A is a projection of $T(\mathfrak{X})$ and $A(T(\mathfrak{X}))$ and $A^{-1}(0)$ are invariant under $P = \lambda(\Gamma)$ respectively. Then, he will show that the well known parallelism of Levi-Civita in Riemannian geometry can be considered as a parallelism by means of a sort of general connections.

In this paper, the author will use the notations in [7], [8], [9], [10].

§1. Products of a general connection and tensor fields of type (1.1).

Let \mathfrak{X} be a differentiable manifold of dimension n and Γ be a general connection of \mathfrak{X} which is written in terms of local coordinates u^{i} as

(1.1)
$$\Gamma = \partial u_j \otimes (P_i^j d^2 u^i + \Gamma_{ih}^j du^i \otimes du^h)$$

or

(1.2)
$$\Gamma = \partial u_{j} \otimes (d(P_{i}^{j} du^{i}) + A_{ih}^{j} du^{i} \otimes du^{h}),$$

where

(1.3)
$$\Lambda_{ih}^{j} = \Gamma_{ih}^{j} - \frac{\partial P_{i}^{j}}{\partial u^{h}}.$$

For each coordinate neighborhood (U, u^i) , we have two mappings

$$f_U: U \rightarrow \mathfrak{M}_n^2 = \{(a_i^j, a_{ih}^j)\}^{2}$$

by

(1.4) $a_i^j \cdot f_U = P_i^j, \qquad a_{ih}^j \cdot f_U = \Gamma_{ih}^j$

Received November 9, 1961.

¹⁾ See [8].

²⁾ See [10], §2 or [7], §1.