REMARKS CONCERNING TWO QUASI-FROBENIUS RINGS WITH ISOMORPHIC RADICALS

BY SHIGEMOTO ASANO

The purpose of this short note is to make some supplementary remarks to the author's previous work [2] and refine theorem 2 of [2]. Let A and \tilde{A} be two quasi-Frobenius rings and let the radical \tilde{N} of \tilde{A} be isomorphic to the radical N of A; we shall identify \tilde{N} with N and say that A and \tilde{A} have the same radical N. Let

$$A = \sum_{\kappa=1}^{k} \sum_{i=1}^{f(\kappa)} Ae_{\kappa,i}$$

be a decomposition of A into direct sum of indecomposable left ideals; the elements $e_{\kappa,i}$ $(1 \le \kappa \le k, 1 \le i \le f(\kappa))$ are mutually orthogonal primitive idempotents of A such that $Ae_{\kappa,i} \cong Ae_{\lambda,j}$ if and only if $\kappa = \lambda$. We put $e_{\kappa,1} = e_{\kappa}$, $\sum_{i} e_{\kappa,i} = E_{\kappa}$; $E = \sum_{\kappa} E_{\kappa}$ is the unit element of A. Further, let $\tilde{e}_{\kappa,i}$, \tilde{E}_{κ} , etc. have the same meaning to \tilde{A} as $e_{\kappa,i}$, E_{κ} , etc. to A. For a subset S of A we denote the left [right] annihilators of S by $l_A(S)$ $[r_A(S)]$; the notations $l_{\tilde{A}}(*)$, $l_N(*)$ etc. may be defined similarly.

Remembering theorem 1 of [2], we shall assume in this note that both A and \tilde{A} are bound rings and that $M = l_N(N) = r_N(N)$ is contained in N^2 . Then by theorem 2 of [2] $\bar{A} = A/N$ is isomorphic to $\bar{A} = \tilde{A}/N$; moreover, there is a (unique) 1-1 correspondence between the simple constituents of \bar{A} and those of \bar{A} . So that we may assume, after a suitable reordering, that $\bar{A}_{\kappa} = \bar{A}\bar{E}_{\kappa}$ corresponds to $\bar{A}_{\kappa} = \bar{A}\bar{E}_{\kappa}$ in this correspondence $(1 \leq \kappa \leq k)$.

PROPOSITION 1. Let A and \tilde{A} be as above. Let $1 \supset 1'$ be two left A-ideals contained in N and let the factor module 1/1' be simple and isomorphic to Ae_{κ}/Ne_{κ} . Assume moreover that 1 and 1' are left \tilde{A} -ideals. Then 1/1' is also a simple \tilde{A} -module and is isomorphic to $\tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$. Similarly for right ideals.

Proof. First we assume that $1 \subseteq M = 1' \subseteq M$. Then we must have $1 \subseteq M$ $\supseteq 1' \subseteq M$, and there exists a minimal left A-ideal I_0 in M such that $1 \subseteq M = 1' \subseteq M + I_0$; from this it follows that $1 = 1' + I_0$ and the assumption $1/1' \cong Ae_{\kappa}/Ne_{\kappa}$ shows that $I_0 \cong Ae_{\kappa}/Ne_{\kappa}$. As I_0 is also a left \tilde{A} -ideal, we have that $1/1' \cong I_0 \cong \tilde{A}\tilde{e}_{\kappa}/N\tilde{e}_{\kappa}$ is a simple \tilde{A} -module. Now assume that $1 \subseteq M \supseteq 1' \subseteq M$, we have for a suitable left A-ideal 1* in $M \subseteq M \subseteq 1' \subseteq M + 1^*$, which implies $1 = 1' + 1^*$ since 1/1' is a simple A-module. This contradicts the assumption $1 \subseteq M \supseteq 1' \subseteq M$. Now, note that $1 \subseteq M/1' \subseteq M = 1 \subseteq (1' \subseteq M)/1' \subseteq M \cong 1/1'$ (as A-modules

Received June 8, 1961.