ON CONFORMAL MAPPING OF A MULTIPLY-CONNECTED DOMAIN ONTO A CIRCULAR SLIT COVERING SURFACE

BY HISAO MIZUMOTO

§1. Introduction.

In the present paper we will concern ourselves with conformal mapping of a multiply-connected domain of finite connectivity onto a canonical covering surface whose boundary consists of whole circumferences and circular slits centred at the origin on the basic plane. We will discuss the existence of such a mapping function and its extremality. The purpose of our present investigation is an extension and an improvement of the results obtained in our previous papers [4] and [5].

§2. Preliminaries.

Let B be a multiply-connected domain of finite connectivity on the z-plane. We suppose that each component C_j $(j = 1, \dots, N)$ of its boundary C is a continuum. Let z_0, z_k^0 $(k = 1, \dots, N^0; N^0 \ge 0)$ and z_i^{∞} $(l = 1, \dots, N^{\infty}; N^{\infty} \ge 0)$ be arbitrarily preassigned $N^0 + N^{\infty} + 1$ points in B, and positive integers μ_k^0 and μ_i^{∞} $(k = 1, \dots, N^0; l = 1, \dots, N^{\infty})$ be given arbitrarily.¹⁾ Let \mathfrak{F} be the class of analytic functions w = f(z) on B with the following properties:

(a) f has the only zeros z_k^0 $(k = 1, \dots, N^0)$ and the only poles z_l^{∞} $(l = 1, \dots, N^{\infty})$ with their orders μ_k^0 and μ_l^{∞} , respectively;²⁾

(b)
$$w = 0, \ \infty \oplus \overline{f(B)} - f(B);$$

(c)
$$\left|\int_{c} \lg |f| \, d\arg f\right| < +\infty,$$

where the line integral means $\lim_{n\to\infty}\int_{\partial B_n} \lg |f| d \arg f$ with an exhaustion $\{B_n\}$ of B;

)
$$f(z_0) = 1$$

Let B^* be a subdomain of B whose boundary C^* consists of components C_j^* $(j = 1, \dots, N)$, each being a simple analytic closed curve homotopic to C_j in $B - \sum_{k=1}^{N^0} \{z_k^0\} - \sum_{l=1}^{N^0} \{z_l^\infty\}^{3^\circ}$ We define the rotation number of the image of C_j about w=0 under $f \in \mathfrak{F}$ by

(1)
$$\nu_j(f) = \frac{1}{2\pi} \int_{C_j^*} d\arg f$$
 $(j = 1, \dots, N).$

Then, it is easily verified by the argument principle that $\nu_j(f)$ $(j = 1, \dots, N)$

Received January 29, 1961.

(d)

- 1) Here the case $N^0 = 0$ or $N^{\infty} = 0$ is permitted.
- 2) Of course, if $N^0 = 0$ or $N^{\infty} = 0$, f has no zeros or no poles in B, respectively.

3) Here, in the case $N^0 = 0$ or $N^{\infty} = 0$, the corresponding summations are taken to be vacuous, and the similar notes should be taken throughout the paper.