A NOTE ON THE ENTROPY OF A CONTINUOUS DISTRIBUTION

BY HIROHISA HATORI

1. The uniqueness of the expression $H = -\sum p_{\nu} \log p_{\nu}$ for the entropy of a discrete distribution has been discussed by Shannon [4] and Khintchin [2]. Goldman [1] has given an explanation of the entropy

$$H=-\int\cdots\int f(x_1,\,\cdots,\,x_n)\log\,f(x_1,\,\cdots,\,x_n)\,dx_1\cdots dx_n$$

of a continuous distribution on the basis of the discrete case. On the other hand Reich [3] has derived directly the expression for the information rate of a continuous distribution from some postulates. In this short paper we shall try to give another explanation of the entropy of a continuous distribution which is rather similar to the one in the discrete case.

2. Let $f(x_1, \dots, x_n)$ denote the probability density function of the joint distribution of random variables X_1, \dots, X_n . And we set

POSTULATE I. The entropy $H(X_1, \dots, X_n)$ of (X_1, \dots, X_n) is determined by f alone.

Owing to this postulate we shall denote $H(X_1, \dots, X_n)$ as H(f).

Secondly, let $g_S(x_1, \dots, x_n)$ denote the probability density function of the uniform distribution on a subset S with finite positive measure of the *n*-dimensional Euclidean space E_n .

POSTULATE II. If f is the probability density function of an n-dimensional distribution where $f \equiv g_S(a.e.)$ and car. $(f) \subset S$, then $H(f) < H(g_S)$.

Let $\phi(x_1, \dots, x_k)$ be the probability density function of the radom variable $A \equiv (X_1, \dots, X_k)$ and $\psi_{x_1, \dots, x_k}(x_{k+1}, \dots, x_n)$ be the conditional probability density function of the random variable $B \equiv (X_{k+1}, \dots, X_n)$ under the condition $X_1 = x_1, \dots, X_k = x_k$. We set

POSTULATE III. $H(AB) = H(A) + H_A(B)$,

Received October 30, 1958.