ON SPECIAL VALUES OF STANDARD *L*-FUNCTIONS ATTACHED TO VECTOR VALUED SIEGEL MODULAR FORMS

NORITOMO KOZIMA

1. Introduction

Let V be a vector space of dimension $n \in \mathbb{Z}_{>0}$ over C and $\operatorname{sym}^{l}(V)$ the *l*-th symmetric tensor product of V with $l \in \mathbb{Z}_{\geq 0}$. For $k \in \mathbb{Z}_{\geq 0}$, let f be a $\operatorname{sym}^{l}(V)$ -valued Siegel modular form of type det^k $\otimes \operatorname{sym}^{l}$ with respect to $Sp(n, \mathbb{Z})$ (size 2n). Suppose f is a cuspform and an eigenform (i.e., a non-zero common eigenfunction of the Hecke algebra). Then we define the standard L-function attached to f by

(1.1)
$$L(s, f, \underline{St}) := \prod_{p} \left\{ (1 - p^{-s}) \prod_{j=1}^{n} (1 - \alpha_j(p) p^{-s}) (1 - \alpha_j(p)^{-1} p^{-s}) \right\}^{-1},$$

where p runs over all prime numbers and $\alpha_j(p)(j = 1, ..., n)$ are the Satake pparameters of f. The right-hand side of (1.1) converges absolutely and locally uniformly for $\operatorname{Re}(s) > n + 1$. We put

$$\Lambda(s, f, \underline{\mathrm{St}}) := \Gamma_{\mathbf{R}}(s+\varepsilon)\Gamma_{\mathbf{C}}(s+k+l-1)\prod_{j=2}^{n}\Gamma_{\mathbf{C}}(s+k-j)L(s, f, \underline{\mathrm{St}})$$

with

$$\Gamma_{\mathbf{R}}(s) := \pi^{-s/2} \Gamma\left(\frac{s}{2}\right), \quad \Gamma_{\mathbf{C}}(s) := 2(2\pi)^{-s} \Gamma(s),$$

and

$$\varepsilon := \begin{cases} 0 & \text{for } n \text{ even,} \\ 1 & \text{for } n \text{ odd.} \end{cases}$$

Then by Takayanagi [9, Theorem 2, Theorem 3], we have:

If $k, l \in 2\mathbb{Z}$, k > 0, $l \ge 0$, then $\Lambda(s, f, \underline{St})$ has a meromorphic continuation to the whole s-plane and satisfies the functional equation

$$\Lambda(s, f, \underline{\mathrm{St}}) = \Lambda(1 - s, f, \underline{\mathrm{St}}),$$

Received May 14, 1999.