HYPERBOLIC HYPERSURFACES IN THE COMPLEX PROJECTIVE SPACES OF LOW DIMENSIONS

Manabu Shirosaki

§1. Introduction

There have been a number of results for hyperbolic hypersurfaces in the complex projective spaces (cf. [AS], [BG], [D], [K], [MN], [N], [S] and [Z]). In particular, J. P. Demailly [D] constructed a remarkable example of hyperbolic hypersurfaces of degree 11 in $P^3(C)$. On the other hand, the author [S] gave hyperbolic hypersurfaces of degree 13^n in $P^n(C)$ whose complements are complete hyperbolic and hyperbolically imbedded in $P^n(C)$. In this paper, we give hyperbolic hypersurfaces in the complex projective spaces of dimension 2, 3 and 4. For example, we construct hyperbolic hypersurfaces in $P^3(C)$ of degree 31 whose complements are complete hyprebolic and hyperbolically imbedded in $P^3(C)$, and hyperbolic hypersurface of degree 36 in $P^4(C)$.

Acknowledgment. The author would like to thank the referee for many helpful comments.

§2. A holomorphic mapping into a hypersurface in $P^n(C)$

Let n, q and d be positive integers such that $q \ge n+1$ and $d \ge (q-1)^2$. Let V be a set of q column vectors in \mathbb{C}^{n+1} . We make the following assumptions.

- (A1) The vectors in V are in general position.
- (A2) Take any k with $0 \le k \le \min\{n, q n 2\}$. Then, for any distinct vectors $\mathbf{v}_0, \dots, \mathbf{v}_n, \mathbf{u}_0, \dots, \mathbf{u}_k$ in V and any d-th roots of $\omega_0, \dots, \omega_k$ of -1, the n + 1 vectors $\mathbf{v}_j \omega_j \mathbf{u}_j$ ($0 \le j \le k$) and \mathbf{v}_j ($k + 1 \le j \le n$) are linearly independent.
- (A3) Take any k with $1 \le k \le \min\{n, q n 1\}$. Then, for any distinct vectors $v_0, \ldots, v_n, u_1, \ldots, u_k$ in V

$$\sum_{j=1}^k \left\{ \frac{\det(\boldsymbol{u}_j, \boldsymbol{v}_1, \dots, \boldsymbol{v}_n)}{\det(\boldsymbol{v}_0, \boldsymbol{v}_1, \dots, \boldsymbol{v}_n)} \right\}^d + 1 \neq 0.$$

Received April 23, 1999; revised January 28, 2000.