G. JIANG, M. OKA, T. P DUC AND D. SIERSMA KODAI MATH. J. 23 (2000), 214–223

LINES ON BRIESKORN-PHAM SURFACES

GUANGFENG JIANG, MUTSUO OKA, DUC TAI PHO, AND DIRK SIERSMA

Abstract

By using toric modifications and a result of Gonzalez-Sprinberg and Lejeune-Jalabert, we answer the following questions completely. On which Brieskorn-Pham surface there exist smooth curves passing through the singular point? If there exist, how "many" and what are the defining equations?

1. Introduction

Let (X,0) be an analytic space germ embedded in $(\mathbb{C}^n,0)$, and (L,0) be a smooth curve germ in $(\mathbb{C}^n,0)$. Since L is locally biholomorphic to a line, we often say that L is a line. If for a singular point $O \in X_{sing}$, there exists a line (smooth curve) L in \mathbb{C}^n such that $O \in L$ and $L \setminus \{O\} \subset X_{reg}$, we say that X contains (or has) a line passing through O.

On a singular surface X in \mathbb{C}^3 one can not always find a smooth curve passing through (not contained in) the singular locus of X. Gonzalez-Sprinberg and Lejeune-Jalabert proved a criterion for the existence of smooth curve on any (two dimensional) surface. We quote this result here for the convenience of the reader. Let $\pi: \tilde{X} \to (X,0)$ be the minimal resolution of a singular surface (X,0). Let \mathscr{L} be the set of lines on (X,0). For an exceptional divisor E, let \mathscr{L}_E denote the set of lines on (X,0) with the strict transform intersecting E transversally. Let m be the maximal ideal of the local ring $\mathcal{O}_{X,0}$. The cycle \mathscr{L}_X on \tilde{X} defined by the ideal sheaf $\mathfrak{m}\mathcal{O}_{\tilde{X}}$ is called the *maximal cycle of* π .

GONZALEZ-SPRINBERG AND LEJEUNE-JALABERT THEOREM ([1,2]). (1) There exists lines on (X,0) if and only if the maximal cycle \mathscr{Z}_X has at least one reduced component;

(2) The set of all the lines on (X,0) is a disjoint union of the \mathcal{L}_E 's with each E a reduced component in \mathcal{Z}_X . And \mathcal{L}_E is called the family of lines corresponding to E.

Key words and phrases: line, Brieskorn-Pham surface, toric modification, torsion number. The first author was supported by JSPS: P98028.

¹⁹⁹¹ Mathematics Subject Classification: 14J17, 32S25, 32S45.

Received January 22, 1999; revised December 10, 1999.