INVOLUTIONS FIXING THE DISJOINT UNION OF 3-REAL PROJECTIVE SPACE WITH DOLD MANIFOLD*

Zhi Lü and Xibo Liu

Abstract

In this paper, we determıne the existence of all involutions fixing a disjont union of 3-real projective space $\operatorname{RP}(3)$ with Dold manifold under the condition that the normal bundle to $R P(3)$ does not bound, and also study the representatives up to bordism of those involutions which exist.

§1. Introduction

Let (T, M) be an involution on a closed manifold, and let F denote the fixed point set of (T, M). When F is chosen as

$$
\begin{gathered}
\{\mathrm{pt}\} \sqcup S^{m}, \quad R P(2 k), \quad R P(m) \sqcup R P(n), \quad \sqcup R P(2 l+1)(l \text { fixed }), \\
\sqcup_{i=1}^{p} R P\left(2 l_{i}+1\right), \quad \sqcup_{i=1}^{r}\left(S^{1}\right)^{k_{1}},
\end{gathered}
$$

and $\left(S^{n_{1}} \times S^{n_{2}} \times \cdots \times S^{n_{p}}\right) \sqcup\{\mathrm{pt}\}$, respectively, the existence and the representative (up to bordism) of (T, M) have been studied in [2], [11], [9], [13], [4], [12] and [8]. The purpose of this paper is to determine the existence and the representative up to bordism of all involutions fixing a disjoint union $R P(3) \sqcup P(m, n)$, where $P(m, n)$ is the Dold manifold of dimension $m+2 n$ obtained from the product $S^{m} \times C P(n)$ of the m-sphere with the n-dimensional complex projective space by identifying (x, z) with $(-x, \bar{z})$ (here $\left.(x, z) \in S^{m} \times C P(n)\right)$. For this purpose, we first study the vector bundle over Dold manifold so that we can begin with our discussion on the existence of all involutions. The main method will be a formula given by Kosniowski and Stong in [5], and Lucas Theorem [10] will also be used. By setting an involution on Dold manifold $P(3, n+1)$, we partially give the representatives up to bordism of those involutions which exist.

[^0]
[^0]: 1991 Mathematics Subject Classification: 57R85, 57R90, 55N22.
 Keywords: Involution, Dold manifold, symmetric polynomial function, characteristic class, bordism.
 *This work is supported by the Youthful Foundation of Tsinghua University, and partly by the Japanese Government Sholarshıp.

 Receıved October 20, 1998; revised April 28, 1999.

